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Paris-Sud 11, F-91405 Orsay CEDEX, France,

and Project Team SIMPAF, INRIA Research Centre Lille-Nord Europe Park Plazza, 40,
avenue Halley, F-Villeneuve d’Ascq CEDEX, France. Work supported by CEA/DIF.

frederic.lagoutiere@math.u-psud.fr

Emmanuel Labourasse††
†CEA, DAM, DIF, Bruyères-le-Chatel, F-91297 Arpajon Cedex

emmanuel.labourasse@cea.fr

Isabelle Marmajou!!

†CEA, DAM, DIF, Bruyères-le-Chatel, F-91297 Arpajon Cedex

isabelle.marmajou@cea.fr

Abstract

A new numerical method called Vofire is described here. It can be used
for integrating transport equations approximated on general meshes in
any dimension. The algorithm relies on a piecewise constant reconstruc-
tion of an unknown in each cell, where the reconstructed function varies
only in the directions orthogonal to the velocity. This allows to design a
non-dissipative and maximum preserving scheme for the transport of char-
acteristic functions. It is then incorporated in a Lagrangian scheme with
remeshing for the computation of multi-component compressible flows.



The Vofire scheme

Key words : non-dissipative transport scheme, multidimensional recon-
struction scheme, compressible multicomponent fluid flow, Lagrange +
remap scheme.

1 Introduction

Advection of discontinuous profiles by means of Finite Volume schemes is still chal-
lenging despite constant works. Discontinuous profiles are common to an Eulerian
CFD code dealing with multi-phase or multimaterial flows. This is also the case
when ALE (Arbitrary Lagrangian Eulerian) simulations are performed. First intro-
duced by Hirt et al. [13], ALE calculations consist in allowing the mesh to move
with arbitrary velocity u independent of the flow velocity uf . This method degen-
erates to the Euler framework when u = 0, and to the Lagrangian framework when
u = uf . The reader is invited to refer to the paper of Benson [2] for a comprehen-
sive presentation, to [10] for an insight on ALE and to [12] for mesh regularization
techniques.

In the case of Eulerian calculations using a Cartesian mesh, several interface
reconstruction or tracking methods have been proposed (a review of the possibilities
is available in [27]). These methods can be roughly grouped into three families:
Front or Interface Tracking (see for instance [34, 25]), Level-Set [28], and Simple
Line Interface Calculation (SLIC, see [24]) or Volume of Fluid (VOF, see [36, 23]).
We know nothing in the literature about the use of Level-Set for 3D conservative
calculations of multi-material flows in a Lagrange code, which is our ultimate goal
in this work. This is why we do not discuss this method any more.

VOF seems to be the best candidate to calculate this kind of flows (see for in-
stance [3] or [26] for a review on VOF methods). Unfortunately, VOF is quite diffi-
cult to extend to 3D unstructured meshes, in particular for more than two materials.
Some promising attempts have been proposed (see for instance [11, 29, 31, 16]) but
very few realistic simulations using these methods have been published.

We propose here a different way of avoiding the numerical diffusion of the inter-
faces. This method is based on the previous work [7], further extended to non-linear
equations in [4] and in [19, 20] by one of the authors. See also [37] for the use of
this approach in the context of Weno schemes. In [7] a flux-based anti-dissipative
scheme is defined for high-speed compressible flow calculations, but which is by con-
struction restricted to Cartesian meshes. This paper describes an extension of this
scheme to 3D unstructured meshes. We concentrate on the design principle of the
method and on the construction of an effective scheme. Theoretical considerations,
such as obtaining fine a priori estimates and/or estimates of convergence, are not
considered in this work. Instead we will rely on numerical tests to illustrate the gain
of accuracy provided by the method proposed in the present work.

A basic model, convenient for expository purposes, is the transport equation of
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a concentration c ∈ [0, 1] with velocity u
{

∂tc + (u,∇c) = 0, t > 0, x ∈ R2,
c(0, x) = c0(x), x ∈ R2.

(1)

The velocity u = u(x) is a given smooth velocity field and the initial data is c0(x) ∈
[0, 1]. The velocity field can also be a function of time, but, for the sake of simplicity,
we drop this dependency. The equation is equivalent to

∂tc + div (cu) = cdiv (u) . (2)

We will conduct the analysis first assuming that div (u) = 0, but then we will
relax this assumption. An important issue for the numerical treatment of this PDE
problem is the numerical diffusion. This phenomenon, easily understandable in
dimension one, is more complex in higher dimension. It can be decomposed in two
different types of diffusion. The diffusion of the first type, which is called longitudinal
diffusion, is the one that occurs in the direction of the velocity. It is the diffusion
present in one-dimensional computations. The second type, transverse diffusion, is
typically multidimensional and is due to the fact that the fluid velocity is not aligned
with the mesh. This distinction between the two phenomena could appear arbitrary,
but is in accordance with basic numerical tests. For example consider an initial
condition which is the characteristic function of a square ]0.25, 0.75[×]0.25, 0.75[.
This profile is advected with the upwind scheme. The velocity direction u has a
great influence on the result. It is illustrated on figure 1.

Figure 1: Upwind scheme. The initial condition is the characteristic function of a
square. Final time t = 1. Periodic boundary conditions. On the left: the velocity
u = (1, 0) is aligned with the mesh; the result displays only longitudinal diffusion.
On the right: the velocity u = (1, 1) is not aligned with the mesh. The consequence
is longitudinal and transverse diffusion.

The difference between longitudinal and transverse diffusions appears clearly
in [6] which was a previous attempt to elaborate non-dissipative schemes on non-
Cartesian grids. In what follows we construct new transport algorithms, which are
based on the distinction between transverse diffusion and longitudinal diffusion.

The original feature of the schemes that we propose is the following. On a
Cartesian grid directional splitting methods use the natural definition of the grid.
But on a general grid this is not possible anymore. So in order to reduce the scheme
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to a series of local one-dimensional problems (that one could solve efficiently) one
needs to figure out what could be the local main direction, using some additional
information. Usually one considers some gradient line of the solution, see [1, 2,
17]. In this work we propose to use the velocity direction. The method is based
on the construction of anti-dissipative flux. So it is different from the MUSCL
approach for which we refer the reader to the very complete review [1] (see also
references therein). MUSCL reconstructions are piecewise-linear, while ours are
piecewise-constant. Since the core of the method is the idea of reconstruction, we
propose to call it Vofire, which stands for Volume fini avec reconstruction in French
(that stands for Finite Volume with Reconstruction). Like MUSCL schemes, Vofire
satisfies a local maximum principle in the form

min
(

cn
j , min

k∈N−(j)
cn
k

)
≤ cn+1

j ≤ max
(

cn
j , max

k∈N−(j)
cn
k

)

where N−(j) is the set of all cells such that the flow is incoming from cell k ∈ N−(j)
into cell j. This inequality is slightly more restrictive than the one studied in [1]
where the minimum (resp. maximum) is taken over all neighboring cells.

We also show how to extend this method for multimaterial simulations. We prove
the theoretical properties (maximum principle and conservativity) are essentially
preserved in the remap step of a Lagrange+remap scheme. Indeed, the remap step
of such a scheme can be recast in a numerical resolution of (1). In general the
equivalent transport velocity does not satisfy div (u) = 0. But the transport of
concentration c, ∂t(ρc) + div (ρcu) = 0, where ρ is the fluid density that satisfies
∂tρ + div (ρu) = 0, is equivalent to ∂tc + (u,∇c) = 0. It allows to extend to the
remap stage the analysis already performed for pure transport. Since the remap and
the Lagrange steps are independent, there is no need to discuss the latter in this
paper.

The plan is as follows. In section 2 we give the notations. The principles of
the geometric reconstruction are developed in section 3. The Vofire Algorithm is
explained in section 4. This is followed by pure transport numerical results in section
5. Then we show in section 6 a simple strategy to adapt this method in the remap
phase of a multimaterial algorithm. The result of a challenging 3D numerical test
is given in section 7. Finally we draw some conclusions about the advantages and
limitations of VOFIRE.

2 Notations in 2D

We shall develop the schemes in the context of Finite Volume methods. We begin
with notations, see figure 2. We consider a 2D mesh composed of open cells (Tj) such
that Tj∩Tk = ∅ for every j, every k '= j. For all j, k, lj,k denotes the one-dimensional
Lebesgue measure of the edge between adjacent cells j and k:

lj,k = length
(
Tj ∩ Tk

)
,

thus lj,k = lk,j. For each cell Tj , N(j) denotes the set of indices of neighboring
cells of Tj (cells having a common edge with Tj). For for k ∈ N(j) (Tj and Tk
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have an edge in common), nj,k denotes the unit normal vector to the common edge
directed outward from Tj . We thus have nj,k = −nk,j for every j ∈ Z and every
k ∈ N(j). Let uj,k be some consistent mean value of the velocity on the edge
Tj ∩ Tk. Then N+(j) ⊂ N(j) is the set of indices of the downwind neighbors of Tj

and N−(j) ⊂ N(j) is the set of indices of the upwind neighbors of Tj

N+(j) = {k; (uj,k,nj,k) > 0} and N−(j) = {k; (uj,k,nj,k) < 0} ,

where (·, ·) denotes the Euclidean dot product. Let sj = area (Tj) be the 2D
Lebesgue measure of the cell Tj.

u
Tk

Tl

Tm

Tj

nj,k

lj,k

lj,m
nj,m

nj,l

lj,l

k, l, m ∈ N(j)

k, l ∈ N+(j)

m ∈ N−(j)

Figure 2: Mesh and notations (with u constant for simplicity).

Let ∆t > 0 be the time step. We integrate the transport equation (2) over the
time-space domain [n∆t, (n + 1)∆t] × Tj and get

sj

cn+1
j − cn

j

∆t
+

∑

k∈N(j)

lj,k(uj,k,nj,k)cn
j,k =




∑

k∈N(j)

lj,k(uj,k,nj,k)



 cn
j . (3)

In this formula, the quantities uj,k are approximate values of the given velocity u(x)
on the edges

uj,k =
1

lj,k

∫

Tj∩Tk

udσ, (4)

and cn
j,k are approximations of the edge-based fluxes between times n∆t and (n +

1)∆t. This equation rewrites

sj

cn+1
j − cn

j

∆t
+

∑

k∈N(j)

lj,k(uj,k,nj,k)(cn
j,k − cn

j ) = 0. (5)

This formula defines a class of finite volumes schemes. For instance, the upwind
scheme is obtained by taking cn

j,k = cn
j for all k ∈ N+(j) and cn

j,k = cn
k for all

k ∈ N−(j). In this case (5) simplifies to

cn+1
j − cn

j +
∆t

sj

∑

k∈N−(j)

lj,k(uj,k,nj,k)(cn
k − cn

j ) = 0, (6)
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where the sum is taken only over the edges corresponding to upwind neighbors. Note
that this scheme satisfies the maximum principle under the Courant-Friedrichs-Lewy
condition (CFL)

νj = −∆t

sj

∑

k∈N−(j)

lj,k(uj,k,nj,k) ∈ [0, 1]. (7)

This upwind scheme is very diffusive and therefore useless for many computations.

3 Geometric reconstruction in 2D

We propose to use a geometric reconstruction to introduce some anti-dissipative
mechanism in the scheme. We consider a triangular mesh in 2D, as in figure 3. In
order to separate the problems of longitudinal and transverse diffusions we perform
the reconstruction in two steps. For the sake of simplicity, we assume in this section
that u is constant (this assumption will be removed in section 4). One has

∑

k∈N(j)

lj,k(u,nj,k) =
∫

∂Tj

(u,n) dσ =
∫

Tj

div(u) dx = 0. (8)

3.1 First step: the transverse reconstruction

Assume for expository purposes that the mesh is made with triangles in 2D. The
transverse reconstruction consists in breaking a cell in two parts by a segment parallel
to the velocity and modifying the value of the unknown in each of these two sub-cells.
Each triangle Tj has at least one downwind neighbor and at most two. If it has only
one downwind neighbor, we do not perform the transverse reconstruction (we do
not cut the cell). Let us now assume that Tj has two downwind neighbors, Tk and
Tl. It has then one upwind neighbor, Tm. We consider the intersection point of the
two edges relative to the downwind neighbors and cut Tj along the line passing on
this intersection point and parallel to u. The two sub-cells are denoted Tj,k and Tj,l:
Tj,k has Tk as (unique) downwind neighbor, and Tj,l has Tl as (unique) downwind
neighbor. This partitioning is illustrated on figure 3. We use symbols sj,k and sj,l

to denote the areas of sub-cells Tj,k and Tj,l respectively. Clearly sj,k + sj,l = sj and
sj,k > 0 and sj,l > 0. The aim is to define a reconstructed value cR

j,k in Tj,k and a
reconstructed value cR

j,l in Tj,l. We impose

sj,kc
R
j,k + sj,lc

R
j,l = sjc

n
j (9)

to guarantee the local conservativity. Let us write




cR
j,k = cn

j + λj,k

(
cn
k − cn

j

)
, 0 ≤ λj,k ≤ 1,

cR
j,l = cn

j + λj,l

(
cn
l − cn

j

)
, 0 ≤ λj,l ≤ 1,

(10)

which means that cR
j,k and cR

j,l must satisfy a condition of local consistency. We
introduce the idea of anti-dissipative schemes which will serve to find a unique value
of λj,k and λj,l.
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Tk

Tl

Tm

Tj,k

Tj,l

u

Tj

Figure 3: Transverse reconstruction.

Remark 1 A design principle for anti-dissipative methods Our objective is
to choose λj,k and λj,l in order to obtain an anti-dissipative scheme, with a very
low level of numerical diffusion. This is the reason why we seek the largest possible
λj,k and λj,l in the interval [0, 1]. This design principle is inspired by many others
numerical methods with low dissipation that have been published in the literature,
see [38, 37, 7, 8, 4]. We will use this principle systematically in the rest of this work.
But of course we cannot take λj,k = λj,l = 1 directly because the scheme has also to
satisfy the maximum principle.

So our goal is to have the largest λj,k and λj,l in the interval [0, 1], but still
satisfying the maximum principle. Equation (9) can be rewritten as sj,kcR

j,k+sj,lcR
j,l−

sjcn
j = sj,k

(
cR
j,k − cn

j

)
+ sj,l

(
cR
j,l − cn

j

)
= 0, that is

[
sj,k

(
cn
k − cn

j

)]
λj,k +

[
sj,l

(
cn
l − cn

j

)]
λj,l = 0.

The solution of this equation is computed as follows.

1) If sj,k

(
cn
k − cn

j

)
sj,l

(
cn
l − cn

j

)
≥ 0, cn

j is a local extremum in the transverse di-
rection. Then we do not reconstruct, which means λj,k = λj,l = 0 and

cR
j,l = cR

j,k = cn
j . (11)

2) If −
sj,k

(
cn
k − cn

j

)

sj,l

(
cn
l − cn

j

) > 1, the solution is obtained by taking λj,l = 1,

cR
j,l = cn

l , cR
j,k = cn

j −
sj,l

sj,k

(
cn
l − cn

j

)
= (sjc

n
j − sj,lc

n
l )/sj,k. (12)
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3) If −
sj,k

(
cn
k − cn

j

)

sj,l

(
cn
l − cn

j

) < 1, the solution is obtained by taking λj,k = 1,

cR
j,k = cn

k , cR
j,l = cn

j −
sj,k

sj,l

(
cn
k − cn

j

)
= (sjc

n
j − sj,kc

n
k)/sj,l. (13)

Proposition 1 Consider the finite volume scheme (5) with the fluxes cn
j,k = cR

j,k
defined by (11-13). The CFL condition on the time step to respect the maximum
principle is (7), as for the upwind fluxes (6).

Proof The reconstructed quantities (10) respect the maximum principle. By
construction the scheme is equal to a two steps algorithm: first step, use the upwind
scheme for a mesh which is locally cut in smaller cells, as it is described in figure 3,
and with cell quantities equal to the reconstructed quantities; second step, project
onto the original coarse mesh. Therefore it is sufficient to check that the CFL
condition (7) is the same for the original mesh (4 cells in figure 3) and for the new
mesh (5 cells in figure 3).

Since u is constant, then
∑

k∈N+(j) lj,k(u,nj,k) = −
∑

k∈N−(j) lj,k(u,nj,k). The
standard condition (7) for the upwind scheme for the cell Tj thus has the form
∆t
sj

∑
k∈N+(j) lj,k(u,nj,k) ≤ 1, that is

∆t

sj
(lj,k(u,nj,k) + lj,l(u,nj,l)) ≤ 1. (14)

The CFL condition for the sub-cells Tj,k and Tj,l are respectively

∆t

sj,k
lj,k(u,nj,k) ≤ 1 and

∆t

sj,l
lj,l(u,nj,l) ≤ 1. (15)

Let lj = length
(
Tj,k ∩ Tj,l

)
be the length of the segment separating Tj,k and Tj,l.

One has
sj,k =

lj
2 |u| lj,k(u,nj,k), sj,l =

lj
2 |u| lj,l(u,nj,l) (16)

and sj = sj,k + sj,l = lj
2|u| (lj,k(u,nj,k) + lj,l(u,nj,l)). The two inequalities of (15)

and inequality (14) thus rewrite

|u| 2∆t

lj
≤ 1. (17)

They are equivalent. It ends the proof.

3.2 Second step: design principle in 1D

The second part of the algorithm is more traditional. Ideally, we just transport the
reconstructed profile. We detail the idea in the case of a cell having one upwind
neighbor, see figure 3. In this case one has locally, e.g. in the cut cell Tj of figure 3,
only one-dimensional problems. More precisely, (Tm, Tj,k, Tk) and (Tm, Tj,l, Tl) are
one-dimensional triplet in the sense that
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• Tj,k has one upwind neighbor: Tm, and one downwind neighbor: Tk,

• Tj,l has one upwind neighbor: Tm, and one downwind neighbor: Tl.

To perform the numerical advection of the (transversally) reconstructed data, one
thus can think of any 3-point transport scheme. The numerical transport can be
done with a first order accurate transport scheme (e.g. the upwind scheme; note
that the resulting scheme would not be the upwind scheme because of the transverse
reconstruction). One can also use any other algorithm: we choose a first-order
accurate anti-dissipative method, namely the limited downwind scheme (or Ultra-
Bee limiter), which can be reinterpreted as a discontinuous reconstruction scheme,
see [20]. Essentially one can use any linear or non-linear scheme in 1D, provided it
respects some maximum principle.

Let us switch to 1D notations, table 1. We replace (cm, cj,k, ck) or (cm, cj,l, cl)
by the triplet (ci−1, ci, ci+1). The one-dimensional velocity is |u|. The global CFL
condition is (17), see the proof of lemma 1. It means that the equivalent one-
dimensional length associated with sub-cells Tj,k and Tj,l is lj/2. So the two separate
1D problems will have the same CFL condition.

ci−1 ci ci+1

First 1D problem for cells (Tm, Tj,k, Tk) cm cR
j,k ck

Second 1D problem for cells (Tm, Tj,l, Tl) cm cR
j,l cl

Table 1: Example of two 1D problems obtained after the reconstruction process
applied to the situation depicted in figure 3. The central value ci is the reconstructed
value. The left value ci−1 and the right value ci+1 are taken from the neighboring
cells.

In order to perform the update of the value cn
j (to compute cn+1

j ), one needs
to compute the update of cR

j,k and cR
j,l, both of them being denoted as cn

i in the
following. It means we have to solve twice the same one-dimensional transport
equation ∂tc + |u| ∂xc = 0. The associated discrete scheme is

cn+1
i − cn

i

∆t
+ |u|

cn
i+1/2 − cn

i−1/2

∆xi
= 0 with ∆xi =

lj
2

.

Here cn
i+1/2 are the fluxes. Noting νi = |u|∆t/∆xi, standard fluxes with TVD

limitation are cn
i+1/2 = cn

i + 1
2(1− νi)ϕn

i+1/2

(
cn
i+1 − cn

i

)
. The ϕn

i+1/2 coefficient is the
limiter coefficient. We use the Ultra-Bee limiter

µn
i+1/2 =

1
2
(1 − νi)ϕn

i+1/2 = Minmod
(

(1 − νi)(cn
i − cn

i−1)
νi(cn

i+1 − cn
i )

, 1
)

∈ [0, 1]. (18)

The Ultra-Bee limiter it equivalent to a limited downwind scheme, see [7]. This
limiter can be interpreted as a particular application of the remark 1 about anti-
dissipative schemes see for example [7, 37]. Therefore this limiter is convenient for
computations where one seeks strongly optimal non-linear anti-dissipation.
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In dimension greater than one, the final flux will be defined as a modification of
the reconstructed flux. So the final scheme, written in equation (31), is conservative
if div (u) = 0. This fact will be established rigorously in proposition 4.

4 The Vofire scheme

The algebraic extension of the previous algorithm forgets about the geometry of the
problem. The mesh is not assumed to be triangular anymore. Let us assume in this
section that u is divergence-free, that is (8) holds true.

4.1 First step

The starting point is the general scheme (5) with the simplification (8). We write

sj

cn+1
j − cn

j

∆t
+

∑

k∈N(j)

lj,k(uj,k,nj,k)cR
j,k = 0. (19)

This is not the final algorithm. The final flux cn
j,k will be defined as the flux cR

j,k
(to be defined) plus a correction that will be designed later. For the moment we
concentrate on (19). We impose the natural condition cR

j,k = cR
k,j. It ensures the

conservativity of the scheme when div(u) = 0.

Remark 2 It is important to notice that cR
j,k is no more related to a reconstruction

procedure inside the cell. Instead cR
j,k will be related to the outbound faces. However

we state as a design principle that, if the local geometry is the one of figure 3, then the
algebraic algorithm shall be equivalent to the geometrical reconstruction procedure
that was described in the previous section.

We now describe the method to design these cR
j,k. The relations (16) that were

derived in section 3.1 show that the conservativity equation (9) can also be rewritten
as ∑

k∈N+(j)

lj,k(uj,k,nj,k)(cR
j,k − cn

j ) = 0, ∀j (20)

if the velocity is constant uj,k = u. This constraint (20) is defined on the edges
with outbound flux k ∈ N+(j). We generalize (20) as a necessary constraint in the
general case for a non constant velocity. It means that the outgoing flux before and
after reconstruction is supposed to be the same (the upwind value).

To simplify the notations it is convenient to define

pj,k =
lj,k(uj,k,nj,k)∑

i∈N+(j) lj,i(uj,i,nj,i)
∈ [0, 1], k ∈ N+(j)

and
pj,k =

lj,k(uj,k,nj,k)∑
i∈N−(j) lj,i(uj,i,nj,i)

∈ [0, 1], k ∈ N−(j).
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One has
∑

k∈N−(j) pj,k =
∑

k∈N+(j) pj,k = 1. With these notations, the constraint
(20) rewrites ∑

k∈N+(j)

pj,kc
R
j,k = cn

j . (21)

Then we add a second ingredient, already described in remark 1. It consists in taking
cR
j,k as close as possible to the downwind value cn

k , in order to add anti-dissipation
in the scheme. There exist many ways to do that. We propose to minimize the
function J

J =
∑

k∈N+(j)

pj,k

∣∣cR
j,k − cn

k

∣∣ (22)

with respect to the cR
j,k. Define for convenience a parameter λj,k ∈ [0, 1] such that

cR
j,k = cn

j + λj,k

(
cn
k − cn

j

)
. So cR

j,k is in between cn
j and cn

k by construction. This is
similar to equation (10). Then J =

∑
k∈N+(j) pj,k|cn

k − cn
j | |1 − λj,k| and also

J =
∑

k∈N+(j)

pj,k|cn
k − cn

j | (1 − λj,k) . (23)

Constraint (21) rewrites
∑

k∈N+(j)

pj,k

(
cn
k − cn

j

)
λj,k = 0, with λj,k ∈ [0, 1] ∀k. (24)

Proposition 2 The scheme (19) with the constraint (24) preserves the maximum
principle under standard CFL condition (7) for divergence-free velocities.

Indeed, the constraint (24) is equivalent to (20). Therefore the scheme (19)
rewrites

sj

cn+1
j − cn

j

∆t
−

∑

k∈N−(j)

lj,k(uj,k,nj,k)(cn
j − cR

j,k) = 0. (25)

Since, by construction, cR
j,k ∈ ,cn

j , cn
k-, the maximum principle is a consequence of

the CFL condition ∆t
∑

k∈N−(j) lj,k |(uj,k,nj,k)| ≤ sj .
Let us set

Aj =
∑

k

pj,k(cn
k − cn

j ) where the sum is taken over k ∈ N+(j) such that cn
k − cn

j ≥ 0

and

Bj =
∑

k

pj,k(cn
j −cn

k) where the sum is taken over k ∈ N+(j) such that cn
j −cn

k ≥ 0.

That is N+(j) is split into two sets of indices k: those contributing to Aj and those
to Bj. If there is no indices k in the sum that defines Aj (resp. Bj), we set by
default Aj = 0 (resp. Bj = 0). In all cases Aj ≥ 0 and Bj ≥ 0.

Proposition 3 The minimum of J under constraints defined in (24) is

min J = |Aj − Bj | .

International Journal on Finite Volumes - IJFV, 7, pp 30-65, (2010) 40



The Vofire scheme

For the simplicity of notations we skip the index j and define αk = pj,k

(
cn
k − cn

j

)
.

Then minimization problem is rewritten as: Find the minimum of J =
∑

k |αk|(1 −
λk) under constraints

∑
k αkλk = 0 and 0 ≤ λk ≤ 1 for all k. Define 0 ≤ A =∑

αk≥0 αk and 0 ≤ B = −
∑

αk≤0 αk. Assume for example that A ≥ B. Then one
has ∑

αk≥0

αkλk =
∑

αk≤0

(−αk)λk ≤
∑

αk≤0

(−αk).

Since J =
∑

αk≥0 αk −
∑

αk≥0 αkλk −
∑

αk≤0 αk(1 − λk) then

J ≥
∑

αk≥0

αk −
∑

αk≤0

(−αk) −
∑

αk≤0

αk(1 − λk)

=
∑

αk≥0

αk −
∑

αk≤0

(−αk)λk ≥
∑

αk≥0

αk −
∑

αk≤0

(−αk) = A − B.

This value A−B is reached, that is it is the minimum of J . To see this we construct
a particular solution. Let us assume that A > B ≥ 0 (if A = B = 0 then αk = 0
for all k so J = 0). Let us set λ!

k = 1 if αk ≤ 0 and λ!
k = B

A ∈ [0, 1[ if αk ≥ 0. So
Therefore

J(λ!) =
∑

αk≥0

αk

(
1 − B

A

)
= A

(
1 − B

A

)
= A − B = |A − B|

which means that the infimum is reached. The other case B ≥ A ≥ 0 is treated with
the same method.

Definition 1 The algebraic reconstruction that we use is defined by the minimiza-
tion of J described in the proof of the previous proposition. (24).

In practice, we use the following procedure where we precise what to do if Aj =
Bj = 0.

1) If Aj = 0 or Bj = 0, it means that cn
j is a local extremum with respect to the

cn
k for k ∈ N+(j). Then we do not reconstruct, which means

λj,k = 0 and cR
j,k = cn

j for all k ∈ N+(j). (26)

2) If 0 < Aj < Bj, we take

λj,k = 1 for k ∈ N+(j) s.t. ck − cj > 0 (27)

and
λj,k = λj =

Aj

Bj
for k ∈ N+(j) s.t. cj − ck > 0. (28)

3) If Bj ≥ Aj > 0, this case is symmetric to the previous one. It leads to

λj,k = 1 for k ∈ N+(j) s.t. cj − ck > 0 (29)

and
λj,k = λj =

Bj

Aj
for k ∈ N+(j) s.t. ck − cj > 0. (30)
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Remark 3 Assume the geometry is the one of figure 3 (triangle mesh, constant
velocity). Then the solution (26-30) of the minimization problem defined on the
outbound edges is unique and is equal to the solution (11-13) of the reconstruction
procedure inside the cell.

To verify this property, it is sufficient to note that the 3 cases of the above
algorithm for finding the solution of the minimization problem are equivalent to
the 3 cases described in (11-13). Indeed the pj,k are proportional to the areas sj,k,
this is a consequence of the relations (16). So in the case the geometry is the one of
figure 3, one has the relations sj,k

(
cn
k − cn

j

)
sj,l

(
cn
l − cn

j

)
= −µAjBj with µ > 0 and

−
sj,k

(
cn
k − cn

j

)

sj,l

(
cn
l − cn

j

) =
(

Aj

Bj

)±1

. With these relations the equivalence between (26-30)

and (11-13) is immediate.

4.2 Second step

The final scheme is also based on (5) with the simplification (8):

sj

cn+1
j − cn

j

∆t
+

∑

k∈N(j)

lj,k(uj,k,nj,k)cn
j,k = 0, (31)

but with a different flux. The flux cn
j,k for k ∈ N+(j) shall be defined as a modifica-

tion of the reconstructed value cR
j,k by the means of some coefficients µj,k,r ∈ [0, 1],

r ∈ N−(j),

cn
j,k = cR

j,k +




∑

r∈N−(j)

µj,k,rpj,r



 (cn
k − cR

j,k). (32)

This formula needs some comments and justifications. First, by taking µj,k,r = 0 for
all j, k ∈ N(j), one recovers cn

j,k = cR
j,k. The scheme is then equal to (19) and inherits

all its properties. Second, we know that this particular choice is not sufficient for
achieving anti-dissipativity, because the definition of cR

j,k corresponds to the first step
of the geometric algorithm, the second step is still missing: in 1D, the equivalent
scheme would be the upwind scheme.

In the following we mimic the second step of the geometric algorithm and propose
a constructive way of achieving stability and anti-dissipativity. In 1D the method
leads to a definition of µj,k,r ∈ [0, 1] which is equal to µi+ 1

2
defined in (18). The

reader will also notice that the final formula (38) defines the largest possible µj,k,r

provided the maximum principle is satisfied. So it is a way to incorporate anti-
dissipation in the numerical method, as it was stated in remark 1. By stability, we
mean that the scheme must satisfy the maximum principle

min
(

cn
j , min

r∈N−(j)
(cn

r )
)

= mn
j ≤ cn+1

j ≤ Mn
j = max

(
cn
j , max

r∈N−(j)
(cn

r )
)

under a Courant-Friedrichs-Lewy condition.
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The satisfaction of these inequalities is the design principle for the definition of
the µj,k,r. The scheme rewrites

cn+1
j = cn

j − νj

∑

k∈N+(j)

pj,kc
n
j,k + νj

∑

r∈N−(j)

pj,rc
n
j,r, (33)

where νj is the local Courant number (7). By definition of the flux (32), one has the
identity

∑

k∈N+(j)

pj,kc
n
j,k =

∑

k∈N+(j)

pj,k



cR
j,k +




∑

r∈N−(j)

µj,k,rpj,r



 (cn
k − cR

j,k)





= cn
j +

∑

k∈N+(j)

pj,k




∑

r∈N−(j)

µj,k,rpj,r



 (cn
k − cR

j,k)

since
∑

k∈N+(j) pj,kcR
j,k = cn

j . Plugging this identity in (33) and using
∑

k∈N−(j) pj,k =∑
k∈N+(j) pj,k = 1, one obtains

cn+1
j =

∑

k∈N+(j), r∈N−(j)

pj,kpj,r
(
(1 − νj)cn

j + νjc
n
j,r − νjµj,k,r(cn

k − cR
j,k)

)
. (34)

We observe that cn+1
j is a convex combination with coefficients pj,kpj,r since

∑

k∈N+(j), r∈N−(j)

pj,kpj,r = 1.

Let us introduce

mj,r = min(cn
j , cR

j,r) ≥ mn
j and Mj,r = max(cn

j , cR
j,r) ≤ Mn

j . (35)

We will define the coefficients µj,k,r in such a manner that they satisfy the condition

mj,r ≤ (1 − νj)cn
j + νjc

n
j,r − νjµj,k,r(cn

k − cR
j,k) ≤ Mj,r. (36)

In this case the maximum principle is a direct consequence of (34).
Let us provide further details for the definition of µj,k,r. As mj,r ≤ cn

j,r ≤ Mj,r,
the situation is quasi one-dimensional in the sense that standard one-dimensional
limiters do satisfy these last inequalities. The preceding inequalities (36) are satisfied
as soon as mj,r ≤ (1−νj)cn

j +νjmj,r−νjpj,rµj,k,r(cn
k −cR

j,k) and (1−νj)cn
j +νjMj,r−

νjpj,rµj,k,r(cn
k − cR

j,k) ≤ Mj,r since by construction mj,r ≤ cn
j,r ≤ Mj,r. Then: either

cn
k − cR

j,k > 0, and the two inequalities are equivalent to µj,k,r ≤ 1−νj

νj
× cn

j −mj,r

cn
k−cR

j,k
; or,

on the contrary, cn
k − cR

j,k < 0, and µj,k,r ≤
(1−νj)(cn

j −Mj,r)

νj(cn
k−cR

j,k)
. The following inequality

gathers these two cases

µj,k,r ≤
1 − νj

νj
max

(
cn
j − mj,r

cn
k − cR

j,k

,
cn
j − Mj,r

cn
k − cR

j,k

)
. (37)
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Following remark 1, maximizing the anti-dissipativity of the resulting scheme is
achieved by choosing the largest µj,k,r ∈ [0, 1] that satisfies inequality (37). This
leads to the final formula

µj,k,r = min

(
1 − νj

νj
max

(
cn
j − mj,r

cn
k − cR

j,k

,
cn
j − Mj,r

cn
k − cR

j,k

)
, 1

)
. (38)

Note the similarity with the classical one-dimensional limiter formalism [21, 33, 7].
This choice is used for the test-cases presented in the numerical experiments.

Proposition 4 The VOFIRE scheme (31) is conservative for all values of the fluxes
cn
j,k. (Evident).

4.3 Interpretation of (36)

It is possible to rewrite inequality (36) in a more convenient and direct way. Indeed
let us define dj,k,r, for k ∈ N+(j) and r ∈ N−(j), as the solution of

sj
dj,k,r − cn

j

∆t
+




∑

q∈N+(j)

lj,q(uj,q,nj,q)



 d∗j,k,r +




∑

q∈N−(j)

lj,q(uj,q,nj,q)



 cn
j,r = 0

(39)
where the unknown flux is d∗j,k,r = cn

j +µj,k,r(cn
k − cR

j,k). The quantity dj,k,r is simply
the solution of the scheme with the assumption that all fluxes are equal to the same
value cn

j,r for k ∈ N−(j) and that all fluxes are equal to the same value d∗j,k,r for
k ∈ N+(j).

Let us rewrite (39)

dj,k,r = cn
j − νjd

∗
j,k,r + νjc

n
j,r = (1 − νj)cn

j + νjc
n
j,r − νjµj,k,r(cn

k − cR
j,k).

So (36) is equivalent to the simplified problems mj,r ≤ dj,k,r ≤ Mj,r. The number
of such simplified problems is card(N+(j))× card(N−(j)). Once the maximal value
of µj,k,r which satisfies the local maximal principle mj,r ≤ dj,k,r ≤ Mj,r has been
computed, one simply combines these fluxes µj,k,r(cn

k −cR
j,k) with the pj,r coefficients.

It gives (32). This method is easy to implement.

5 Numerical results for pure transport

We first run a basic test to assess the correctness of each phase of Vofire. We compare
the results of the upwind method, the Vofire method, the Vofire method without
transverse reconstruction but with longitudinal limiter and the Vofire method with
transverse reconstruction but without the upwind longitudinal scheme.

Then we compare systematically four schemes on classical test problems. The
schemes are the Upwind scheme, a second order Muscl scheme [1], the Vofire scheme
and the VOF method. The VOF method is inspired from [36]. The implementation
of this method requires a special treatment in 3D for hexahedrons, because it needs
to reconstruct an information about an interface in a cell which has warped faces
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in the general case (our objective is to evaluate this method in an ALE context).
Therefore the VOF method we have used decomposes each hexahedrons into 24
tetrahedrons for which the application of the VOF methodology is much easier.
However this techniques is highly non linear and needs a Newton algorithm to be
implemented. Some degeneracy is possible. Moreover we use VOF in the context of
ALE, that is the implementation must be compatible with the displacement of the
mesh in a second stage of the algorithm, after the reconstruction stage. The results
is that the version of VOF that we use respects the maximum principle, but up to
some small errors. These small errors are visible on the figures. It illustrates the
difficulty of implementing VOF on general meshes for ALE computations. On the
other hand VOF gives very good results in terms of accuracy of the interface.

We will consider the function to measure the amount of numerical diffusion

t .→ F (t) =
∫

c(t, x)(1 − c(t, x))dx. (40)

For an analytical solution such that c = 0 or c = 1, then F ≡ 0. For a numerical
scheme that satisfies the maximum principle, then F (t) ≥ 0. Therefore this function
F serves as a measure of the artificial diffusion of the numerical solution. We will
use this procedure to evaluate the numerical diffusion for all test problems.

Then we compare the CPU costs of the Upwind scheme, a second order Muscl
scheme, the Vofire scheme and the VOF method.

5.1 A basic test

We consider a solid body rotation problem, u(x, y) = (−2πy, 2πx). The initial data
is the characteristic function of a disk of radius 0.2 and center (0.5, 0.7).

We plot in figure 4 the results computed with the full upwind scheme, the Vofire
scheme, and also the Vofire scheme with λ ≡ 0 (but µ '= 0 a priori) and the Vofire
scheme with µ ≡ 0 (but λ '= 0 a priori). The best result is the one computed with
the Vofire algorithm.

We compare the four different evaluation of F (t) in figure 5. One is computed
with the upwind scheme and shows the important diffusion of this method, the three
others are computed with the Vofire method, with the Vofire method in which the
transverse reconstruction is set to zero (Mod2), and with the Vofire method in which
the longitudinal scheme (after the transverse reconstruction) is upwind (Mod1).

5.2 Advection of a square (test 1)

We consider a 100 × 100 × 2 regular hexahedral 3D mesh on a domain [−1, 9] ×
[−1, 9] × [0, 1]. The initial data is the characteristic function of a square [0.8, 3.8] ×
[0.8, 3.8] × [0, 1]. The advection direction u = (0, 1, 0) is aligned with one direction
of the mesh. Therefore the problem is 1D but computed in 3D configuration. The
Courant number is 0.08. The final time is T = 8. At t = 4 we inverse the velocity
field, so that the exact solution at T is equal to the initial solution at t = 0. We use
this method for all test cases.

The results are displayed in figure 6. The Upwind scheme is very dissipative as
usual. The result obtained with a second order MUSCL type method is better, but
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Figure 4: The Vofire method is able to capture the disk after one turn. Other meth-
ods incorporate some degree of upwinding. Vofire with λ ≡ 0 means no transverse
reconstruction, but limiter in the longitudinal direction. Vofire with µ ≡ 0 means
Upwind after the transverse reconstruction. Computation done on a triangular un-
structured mesh (5996 cells), the Courant number is 0.1 (the Courant number is
the maximum over all the cells of the local Courant number defined in (7)). The
iso-lines are for c = 0.2, 0.4, 0.6 and c = 0.8.

still with plenty of numerical diffusion. For this problem Vofire is exact, see a proof
in [7, 37]. The VOF method is exact in theory. But implementation details make
impossible to obtain the full accuracy for reasons that have been explained at the
beginning of this section. A common cut shows that Vofire and VOF give very close
results. We also plot the value of F (t) where F is computed with the formula (40).
It shows that the dissipation of VOF and Vofire is uniformly bounded.
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Figure 5: The function t .→ F (t) for different schemes. The best curve is the one
given by Vofire. Computation done on a triangle unstructured mesh (5996 cells), the
Courant number is 0.1. Mod1 (resp. Mod2) corresponds bottom left (resp. bottom
right) of figure 4.

5.3 Advection of a square in a non trivial direction (test 2)

The mesh is the same as in test 1. The initial data is the characteristic function
of the same square. The advection direction u = ( 1√

2
, 1√

2
, 0) is not aligned with

the directions of the mesh. Therefore the problem is 2D but computed in a 3D
configuration. The Courant number is 0.07. The final time is T = 10.

The results are qualitatively comparable to test case 1, except that Vofire gives
a staircase-like numerical solution (this is typical of Vofire, advection in diagonal
often furnishes this kind of profiles). All methods have their own default: Upwind
has too much dissipation, the second order scheme is better but still with too much
dissipation, Vofire has this staircase-tendency and VOF does not respect exactly the
maximum principle. The cut shows that VOF and Vofire are quite close. The func-
tion F is uniformly bounded for VOF and Vofire (VOF is slightly better however).

5.4 Advection of a square in a tetrahedral mesh (test 3)

We consider a tetrahedral 3D mesh (97853 tets) on a domain [−1, 9]× [−1, 9]× [0, 3].
For this problem, the VOF method does not need the splitting of hexahedrons. The
initial data is the characteristic function of a square. The advection direction is
u = ( 1√

2
, 1√

2
, 0). Therefore the problem is 3D. The Courant number is 0.09. The

final time is T = 10.
The results are displayed in figure 8. No method is exact. However the vi-

sual quality of Vofire and VOF is very similar. The staircase approximation of the
boundaries is no more visible with Vofire. At the same time the problem that VOF
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Figure 6: Test 1. Vofire is equal to the exact solution. VOF is almost perfect but
the maximum principle is not satisfied because there are small spurious oscillations.

has with the exact preservation of the maximum principle on a hexahedral mesh
disappears. The cut and the measure of the dissipation error t .→ F (t) show that
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Figure 7: Test 2. Vofire is close to the exact solution but with spurious oscillations.
VOF is almost perfect up but the maximum principle is still not satisfied

Vofire and VOF give satisfactory very results.
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Figure 8: Test 3

5.5 A square in rotation (test 4)

We consider a hexahedral 3D 100 × 100 × 2 mesh of the domain [−1, 9] × [−1, 9] ×
[0, 1]. The initial data is the characteristic function of a square. The velocity u =
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(
π
10(x − 4), π

10 (4 − y), 0
)

is a solid body rotation. The Courant number is 0.15. The
final time is T = 20.

We do not show the cut neither the result with the Upwind scheme, the results
are very similar to test cases 1 and 2.

order 1

order 2

Vofire
VOF 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  5  10  15  20

t .→ F (t) Order 2

Vofire VOF

Figure 9: Test 4

5.6 A circle in a vortex flow (test 5)

This problem comes from Rider-Kothe [25]. We consider a hexahedral 3D 100 ×
100×1 mesh (the mesh is 2D in some sense) of the domain [−2, 10]× [−2, 10]× [0, 1].
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The initial data is the characteristic function of a circle

(x − 4)2 + (y − 6.5)2 ≤ 1.52.

The velocity

u =
(
cos

π

10
(x − 4) sin

π

10
(y − 4),− sin

π

10
(x − 4) cos

π

10
(y − 4), 0

)

is a vortex flow. The Courant number is 0.08. The final time is T = 60.
VOF gives the best result. The quality of the interface is better than with Vofire

which is much better than the others results. Upwind is disqualified.
The map t .→ F (t) shows that the diffusion reaches a maximum at t = 30 for

VOF and Vofire. For further times, the diffusion is bounded.

Vofire VOF

order 2
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Figure 10: Test 5

5.7 A square in 3D (test 6)

We consider a hexahedral 3D 40×40×40 mesh of the domain [−1, 9]×[−1, 9]×[−1, 9].
The initial data is the characteristic function of a square. The velocity is u =
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( 1√
3
, 1√

3
, 1√

3
). The Courant number is 0.11. The final time is T = 10.

We do not present the results obtained with Upwind and the second order
MUSCL scheme. The quality of the interface is quite good with VOF, with a stair-
case effect with Vofire, see figure 11. The diffusion is better with VOF, but still under
control with Vofire. At the same time the diffusion is an increasing function with
Upwind and the second order scheme. The cut shows that Vofire displays slights
errors at the boundaries of the square. A zoom on the cut profile shows that VOF
does not respect the maximum principle due to a very small negative oscillation.

Vofire VOF

VOF

order 2

order 1

Vofire
!0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10

order 1

order 2

Vofire

VOF 0

 0.005

 0.01

 0.015

 0.02

 0.025

0 2 4 6 8 10

Common cut t .→ F (t)

Figure 11: Test 6

5.8 A numerical test of convergence

The Vofire scheme is highly non linear. In consequence theoretical estimates of
convergence are out of reach. This is why we propose to examin the following
numerical test of convergence, which is a very simple one in dimension two. The
domain is the academic square x = (x1, x2) ∈]0, 1[×]0, 1[, with periodic boundary
conditions. The initial data is

c0(x1, x2) = 1 for 0 ≤ x1, x2 ≤ 0.5, and c0(x1, x2) = 0 elsewhere.

The velocity is

u = (1, 1) for 0 ≤ t < 0.1, and u = −(1, 1) for 0.1 ≤ t < 0.2.
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cells ∆x E F
50 × 50 0.02 0.04055 0.01620

100 × 100 0.01 0.02271 0.00811
150 × 150 0.00666 0.01658 0.00540
200 × 200 0.005 0.01348 0.00430
250 × 250 0.004 0.01133 0.00349
300 × 300 0.00333 0.01013 0.00295
350 × 350 0.00285 0.00889 0.00262
400 × 400 0.0025 0.00805 0.00236
450 × 450 0.00222 0.00720 0.00209
500 × 500 0.002 0.00652 0.00192

order ≈ 0.75 ≈ .9

Table 2: The order of convergence of the error E in L1 is approximatively 0.75. The
spreading measure F seems to converge to zero at a higher rate, around .9 for these
simulations.

The final time of the simulation if T = 0.2 therefore the exact solution at T is equal
to c0. We have performed a series of simulations with finer and finer meshes. At
the final time we compute the error in L1 and we rescale it by the perimeter of c0.
It gives a fist indicator

E =
‖c(T ) − c0‖L1(Ω)

|c0|
=

‖c(T ) − c0‖L1(Ω)

2
.

reference curve 
Data +

0.001

 0.01

 0.1

 100

Data +
reference curve

0.001

 0.01

 0.1

 100

∆x .→ E ∆x .→ F

Figure 12: Convergence slopes: error in L1 on the left, spreading error F on the
right. The reference curve on the left figure is x .→ 0.6x−0.75. The reference curve
on the right figure is x .→ 0.6x−0.9.

We see that the error in L1 is of order approximatively 0.75, which can be
compared with the order of the upwind scheme which 0.5. By construction this
rescaled L1 error is also an indicator of the number of cells on which the numerical
interface is spread. From the values are recorded in table 2, we see that on average

2∆x ≤ E ≤ 3∆x
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which means that the numerical interface is spread between two or three cells for
this problem. We also compute the spreading indicator

F = F (T ) =
∫

Ω
c(1 − c)dx.

We observe that F ≈ ∆x which seems to indicate that F converges to zero at a
faster rate than E. We have no explanation for this super-convergence behavior.

Finally it must be emphasized that the values of this particular convergence test
are easy to interpret. For other problems the numerical order of convergence is much
more difficult to identify.

5.9 CPU comparisons

We have incorporated the multimaterial Vofire method in the 3D ALE multi-physics
Arcane architecture. It makes possible fair CPU comparisons between different
schemes. The table 3 gathers results. However the CPU time is highly dependant
on the conditions (IO, number of jobs on the same processor, . . . ) on which the
run has been completed in our institution. So these results must be taken only as a
tendency.

The analysis of the results show that the geometrical structure of the VOF
method on an hexahedral mesh increases a lot the cost of this method. For test case
3 which uses a tetrahedral mesh, then the CPU cost of VOF is better then Vofire:
for this test case the cost is relatively similar compared with the second order Muscl
scheme (the Upwind scheme give slightly similar results). It is an indication that
the intrinsic CPU cost of VOF and Vofire is under control on tetrahedral meshes,
except that the cost needed to cut hexahedrons into 24 tetrahedrons (needed for
VOF) makes VOF much more expensive than any other methods in this case.

On the other hand the CPU cost of Vofire is of the same order of magnitude than
Upwind and the second order scheme for all meshes. Since the numerical results are
better with Vofire (see test cases 1 to 6) then it shows than Vofire is a credible
alternative at reasonable cost to enhance the numerical quality for the transport of
characteristic functions in various velocity fields.

test case VOF Vofire Order 2
1 (hexs) 6012 1780 823
2 (hexs) 8365 1630 754
3 (tets) 26313 31342 18348
4 (hexs) 27108 2428 1285
5 (hexs) 19297 3282 2308
6 (hexs) 3272 897 446

Table 3: CPU costs in seconds for the test cases

International Journal on Finite Volumes - IJFV, 7, pp 30-65, (2010) 55



The Vofire scheme

6 Extension to multicomponent Euler equations with
non divergent velocity field

The goal is to adapt the previous algorithm to the construction of anti-dissipative
fluxes for multimaterial compressible flows such that the velocity field has a priori
no reason to be divergence free: that is div(u) '= 0.

We focus only on the remapping stage, which follows the Lagrange stage in
a Lagrange+remap algorithm, as in [2, 8]. The Lagrange step presents specific
difficulties and techniques that we do not discuss. To present the main ideas it is
sufficient to focus on the concentration equations of a two-fluid problem,

∂t(ρc1) + div(ρc1u) = 0 and ∂t(ρc2) + div(ρc2u) = 0. (41)

Here c1 and c2 are the mass fractions, which verify c1+c2 = 1. In a Lagrange scheme
the mass of each fluid is constant during the time step, therefore the mass fraction of
each material is also constant. However a pure Lagrange code is not always possible
in 2D and 3D, due to tangling of the mesh. So one usually performs a projection
on a new mesh which is close to the previous one, except for the pathological cells.
Our objective is the adaptation of the method presented in the previous section to
the design of an anti-dissipative multimaterial algorithm in the remap step.

We consider that the remapping is driven by some ALE method, the connectivity
of the mesh is preserved but the location of nodes is changed in order to enhance
the quality of the mesh. An example is given in figure 13 where a quad is remapped
onto a new quad. The shadow zone gives the area that is lost by the cell across the
edge. An evaluation of the area of this shadow zone is ∆t× l× (u,n) where l is the
length of the edge, n is the outward normal and u is the local edge velocity. The
sign of the dot product (u,n) determines the sign of the swept region area. A priori
the edge velocity u is the half sum of the vertices velocities.

l
n u

Figure 13: The sweep method and determination of the shadow zone. Area of the
shadow zone is ∆t × l × (u,n). The edge velocity u is the half sum of the vertices
velocities.

In our simulations it is important to control the numerical diffusion of the species.
This is why we have chosen to focus on the adaptation of the previous anti-dissipative
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algorithm for the mass fractions c1 and c2 and not for the total density ρ. We do
not assume that div(u) '= 0, that is

∑
k lj,k (uj,k,nj,k) '= 0.

6.1 Vofire for multimaterial computations

Let us present a very simple way to incorporate the Vofire algorithm in the remap-
ping stage based on the sweep method. An important idea is to decouple the pro-
jection of the total density, which is done in our case with a standard second order
method, from the projection of the concentrations which is done with the Vofire
method. The goal is to get the simplest possible method, unchanging the existing
hydro-code.

For a two-material problem, the algorithm may be written as

1) First we use a standard second order method for the projection of the total
density. That is

• 1-1) We consider that the displacement of the vertices of the mesh is given
by a specific algorithm, see for example [12, 32] . So one computes the
new area of the cell sj

n+1. A priori sj
n+1 '= sn

j . Then for all interfaces,
one can compute the edge velocity with the sweep algorithm. It gives uj,k

for all j, k.

• 1-2) For all cells, determine the inbound and outbound faces in function
of the sign of (uj,k,nj,k). A face incoming into one cell is necessarily
outgoing on the other side.

• 1-3) Compute some second order fluxes ρ2nd

j,k for the total density with a
standard second order scheme.

At the end of the first part of the method, one knows the total density in each
cell:

sj
n+1ρj

n+1 − sn
j ρ

n
j +∆t

∑

k

lj,k (uj,k,nj,k) ρ2nd

j,k = 0. (42)

We introduce the notations L±
j =

∑
k∈N±(j) lj,k (uj,k,nj,k) ρ2nd

j,k . So L+
j (resp.

L−
j ) is the total outgoing (resp. incoming) mass flux.

2) Then construct the concentration fluxes with Vofire as follows

• 2-1) For all cells, perform a transverse reconstruction of the concentration
c = c1 using (23) with the constraints and (24). The coefficients pj,k are

replaced with the p̃j,k p̃j,k =
lj,kρ2nd

j,k (uj,k ,nj,k)

L+
j

∈ [0, 1] for k ∈ N+(j). The

weights ρ2nd

j,k are natural in the sense that the functional J is a measure
of the mass flux through the interfaces. This functional to be minimized
is

J(λj,k) =
∑

k∈N+(j)

p̃j,k|cn
k − cn

j | (1 − λj,k) (43)
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with the constraint 0 ≤ λj,k ≤ 1 for all k and the linear constraint
∑

k∈N+(j)

p̃j,k

(
cn
k − cn

j

)
λj,k = 0. (44)

This is solved for all j with the method presented in section 4. At the
end of this stage one knows the reconstructed concentration cR

j,k = cn
j +

λj,k(cn
k − cn

j ) for all k ∈ N+(j).
• 2-2) For all cells perform a second limitation of the concentration c = c1

using formulation (39). That is we consider for all k ∈ N+(j) and all
r ∈ N−(j) a prediction dj,k,r

sn+1
j ρn+1

j dj,k,r − sn
j ρ

n
j cn

j +∆tL+
j d∗j,k,r +∆tL−

j cn
j,r = 0. (45)

This prediction dj,k,r corresponds to a simplified problem. The outgo-
ing flux is d∗j,k,r = cn

j + µj,k,r

(
cn
k − cR

j,k

)
. We compute the coefficient

µj,k,r ∈ [0, 1] such that the prediction satisfies dj,k,r ∈ [mj,r,Mj,r] where
mj,r = min

(
cn
j , cn

r

)
and Mj,r = max

(
cn
j , cn

r

)
. There is always a trivial

solution1: µj,k,r = 0. Non trivial solution will be used to incorporate
anti-dissipation. After that we compute the real flux

cn
j,k = cR

j,k +




∑

r∈N−(j)

µj,k,rp̃j,r



 (cn
k − cR

j,k), (46)

• 2-3) Compute c2 = 1 − c1.

3) Once this has been done, remap the concentrations c = c1 and c = c2 with

sj
n+1ρj

n+1cn+1
j − sn

j ρc
n
j +∆t

∑

k

lj,k (uj,k,nj,k) ρ2nd

j,k cn
j,k = 0. (47)

The equations for the definition of the Vofire flux are symmetric for the trans-
formation c .→ 1−c. Therefore for a two-material problem one has by construc-
tion (c1)nj,k +(c2)nj,k = (c1)nj +(c2)nj = 1. So equations (42)-(47) are compatible
since (c1)n+1

j + (c2)n+1
j = 1.

6.2 Stability analysis for 2 materials

Despite the apparent complexity of this method, its stability analysis is easy to
conduct following the method used in section 4. In practice it is sufficient to prove
that the partial masses are non-negative. For simplicity we first detail the analysis
for the two-material case.

1Assume that µj,k,r = 0. Then (42)-(45) imply

dj,k,r =

„
sn

j ρn
j

sj
n+1ρj

n+1
− ∆t

sj
n+1ρj

n+1
L+

j

«
cn
j − L−

j cn
j,r.

In any cases cn
j,r ∈ [mj,r, Mj,r] by (46) for r ∈ N−(j). Therefore dj,k,r is a convex combination of

cn
j,r and cn

j,r. So dj,k,r ∈ [mj,r, Mj,r] is also true for all cn
j,r ∈ [mj,r, Mj,r]. It proves that µj,k,r = 0

is a trivial solution.
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6.2.1 Transverse reconstruction

In order prove the stability, we begin with the case where the flux is cR
j,k, (c = c1 or

c2) which means that the longitudinal flux (after reconstruction) is the upwind one:
µj,k,r ≡ 0. Equations (42)-(47) imply

cn+1
j =

(
sn
j ρ

n
j

sj
n+1ρj

n+1
− ∆t

sj
n+1ρj

n+1
L+

j

)
cn
j (48)

+
∑

k∈N−(j)

(
∆t

sj
n+1ρj

n+1
lj,k (−uj,k,nj,k) ρ2nd

j,k

)
cR
j,k.

Assuming the CFL condition sn
j ρ

n
j − ∆t

∑
k∈N+(j) lj,k (uj,k,nj,k) ρ2nd

j,k ≥ 0, all coef-
ficients are non-negative. Their sum is equal to 1. The non-negativity of the mass
fraction cn+1

j for the transverse reconstruction follows. More precisely one has the
maximum principle

min
(

cn
j , min

r∈N−(j)
(cn

r )
)

= mn
j ≤ cj

n+1 ≤ Mn
j = max

(
cn
j , max

r∈N−(j)
(cn

r )
)

. (49)

The right and left bounds involve only incoming boundaries.

6.2.2 Complete algorithm

Now we add the second step of the method which means the µj,k,r are not necessarily
set to zero. By construction each prediction dj,k,r is such that mj,r ≤ dj,k,r ≤ Mj,r.
Define dj =

∑
k∈N+(j), r∈N−(j) pj,kpj,rdj,k,r. Then one checks from (45) that

sn+1
j ρn+1

j dj − sn
j ρ

n
j cn

j +∆t




∑

q∈N+(j)

lj,q(uj,q,nj,q)ρ2nd

j,q d∗j,k,r





+∆t




∑

q∈N−(j)

lj,q(uj,q,nj,q)ρ2nd

j,q cn
j,r



 = 0.

Since
∑

q∈N+(j) lj,q(uj,q,nj,q)ρ2nd

j,q d∗j,k,r =
∑

q∈N+(j) lj,q(uj,q,nj,q)ρ2nd

j,q cn
j,k then it shows

that cn+1
j = dj . Therefore cn+1

j satisfies the local maximum principle.

6.3 Three materials and more

For three materials and more the analysis is a little more tricky. Assume for sim-
plicity that there are only three materials in the simulation. Then one can have

(c1)nj,k + (c2)nj,k + (c3)nj,k '= 1

for the Vofire fluxes. It has two implications. First, in equation (48) the sum of
the coefficients in parenthesis may be different from 1. Second the equation (42) is
not the sum of the three equations (47) for c = c1, c = c2 and c = c3. There is an
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incompatibility, which means that we have to reconsider the algorithm. Fortunately
the total density computed in (42) is not really important in the definition of the
new concentrations (47). It is the product ρn+1

j cn+1
j that has a physical meaning: it

is the new partial density in the cell. So equation (42) is just a prediction of the total
density in the cell. Let us analyze the consequences. Now cn+1

j is just a prediction of
the new concentration since ρn+1

j is also a prediction of the new total density in the
cell. But what is physically important is the product ρn+1

j cn+1
j . One gets in the cell

a numerical value for ρn+1
j (c1)n+1

j , ρn+1
j (c2)n+1

j and ρn+1
j (c3)n+1

j . Then one defines
the partial densities (ρ1)n+1

j = ρn+1
j (c1)n+1

j , (ρ2)n+1
j = ρn+1

j (c2)n+1
j and (ρ3)n+1

j =

ρn+1
j (c3)n+1

j . The new total density is the sum of the partial densities
(
ρn+1

j

)

true
=

(ρ1)n+1
j +(ρ2)n+1

j +(ρ3)n+1
j . The new concentrations are

(
(c1)n+1

j

)

true
=

(ρ1)n+1
j

(ρn+1
j )

true

. . .

Therefore one recovers a global maximum principle 0 ≤
(
(c1)n+1

j

)

true
≤ 1. . . Which

is sufficient in practice. The local maximum principle (49) could be ensured by
enforcing (c1)nj,k + (c2)nj,k + (c3)nj,k = 1 with specific methods such as in [14].

7 A numerical result in 3D

We consider a challenging problem, which is representative of the difficulties encoun-
tered by other interface reconstruction algorithms: the initial geometry contains a
T junction where the three different materials are in contact; the initial density and
pressure gradients generate a 3D vortex; it makes impossible the computation of
such a flow with a pure Lagrangian scheme and requires specific ALE techniques.

Figure 14: Initial mesh for test case 3.

The dimension of the problem represented in figure 14 in 3D are [0, 1]×[0., 0.25]×
[0., 0.25]. In the left part (x ≤ 0.3), we take ρ = 1, p = 1 and c1 = 1. In the right
interior part (x ≥ 0.3, y ≤ 0.125 and z ≤ 0.125), we take ρ = 1, p = 0.1 and
c2 = 1. In the complementary part the initial data are ρ = 0.125, p = 0.1and
c3 = 1. The initial velocity is u = (0, 0, 0) everywhere. The equation of state is a
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perfect gas law with γ = 1.4 (the same for the three parts), so a reference solution
of this problem can easily be computed with a standard Eulerian code. For these
initial data, the solution at the final time t = 0.4 contains a distorted T junction
inside the vortex region. A shock is created at the vertical interface, oriented to
the right. The results have been computed with ALE techniques, that is the mesh
moves. We use the Lagrange scheme described in [9], but the results are quite similar
with another Lagrange scheme based on the Von Neumann-Richtmyer scheme [2]. A
vortex is created. Therefore the mesh tangles unless specific remeshing algorithms
are used. In our case we used a weighted Tipton-Jun method [15, 32] to regularize
the mesh, the weights are calculated in order to adapt the mesh around the pressure
and concentration gradients.

Figure 15: Concentration of the internal block.

Figure 16: The mesh after displacement. Zoom on the top of the 3D mesh. The
three materials are visible in white, grey and black. The antidissipative feature of
Vofire is able to separate the materials. However in the center of the vortex low
resolution introduce some spreading.

The concentration of the interior zone is represented in figure 15. The mesh
at time t = 0.4 and y = 0.25 corresponding to the superior plane is represented
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on figure 16, together with a map of the concentrations. One clearly sees that the
initial T-junction is inside the vortex, which makes this computation challenging.
For this we use exactly the algorithm described in section 6. One observes that the
concentration profile is steep (even if it is not perfect), especially near the vortex
region, thanks to the Vofire algorithm. A similar computation but without any
reconstruction or anti-dissipative method leads to an excessive amount of mixing.
We have also validated the results by means of a comparison with a reference 3D
Eulerian code with a fine mesh [5]. More results can be found in [18].

8 Conclusion

We have presented the Vofire algorithm which is an anti-diffusive scheme for trans-
port on arbitrary meshes and in any dimension. By construction Vofire satisfies
the maximum principle for all meshes. At the present time it is not possible to
prove rigorously the efficiency of such a method. Therefore we rely on numerical
experiments (test-cases) to illustrate the gain of accuracy provided by this scheme.
The numerical tests for pure transport show that Vofire is indeed anti-diffusive, in
the sense that the function t .→ F (t) is uniformly bounded and very close the the
same function evaluated with the VOF algorithm. For multimaterial computations,
it means that Vofire reduces the influence of mixed cells. We have showed that the
CPU cost is in bound with Vofire, which is not the case for VOF on an hexahedral
mesh (with warped faces).

Even if it was not our initial intention, the tests also show that VOF is sensitive
to the geometrical method which is used, first to intersect a general hexahedron (with
warped faces) by a plane, second to move the global mesh in an ALE context, and
third to project the first mesh onto the final one. In practice it is recommended to
postprocess VOF with a clipping technique near extremas to guarantee the maximum
principle. These issues raise non trivial implementation difficulties, a stressed in [35]
for example. On the other hand VOF corresponds somehow to an optimum with
respect to the quality of the interface. Additional research material on geometric
reconstruction of 3D interface can be found in [22, 30] and references therein.

However the reader must be aware that the VOFIRE algorithm is no a cure
for all the failures of transport algorithms, even if it has less technical difficulties
than the VOF method. Some dissipation remains, this is clear at the observation
of the numerical tests. Some artificial steepening may appear in the simulation.
We observe that it is experimentally on bounds. This steepening is somewhat more
pronounced for Cartesian meshes for reasons that we ignore.
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