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Abstract
We adapt the Saurel-Abgrall front capturing �nite volumes method
for an industrial simulation of compressible multi�uid �ows. We then
apply the method to the case of air-water �ow in the cooling chamber
of an axisymmetrical gas generator. We describe successively how
to deal with exact and global Riemann solvers, pressure oscillations,
unstructured meshes, axisymmetry, boundary conditions and overly
restrictive CFL conditions. The resulting algorithm is e�cient and robust.
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1 Introduction
This work is devoted to the application of recent �nite volumes schemes, and par-
ticularly the one proposed by Saurel and Abgrall in [24], to the simulation of an
axisymmetrical multiphase �ow in a complex geometry. Because of the complex-
ity of the application, we have to specify or adapt the original Saurel-Abgrall idea
to: global Riemann solver, unstructured meshes, axisymmetry, boundary conditions,
multi time steps...

We base our simulation on an e�ective mathematical model for compressible mul-
ti�uid �ows and especially air-water �ows. For our application, the pressure law for
the air is a classical perfect gas law. Because we have in mind �ows with high and
low pressures, we have also to take into account the compressibility e�ects in water.
In such applications, it is classical to observe cavitation zones in the liquid phase.
Cavitation is a phenomenon that appears in a region of the �ow where the pressure
drops below the saturation pressure of water. In a �rst and very short stage, the
liquid stays in a metastable state. It can also happen in this stage that the pressure
becomes negative (it is then called a tension). In a second stage, a phase transi-
tion (vaporization) occurs. Thus the original two-phase �ow, made of air and water,
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becomes a three-phase �ow made of air, liquid and vapor. We restrict ourself to
the two-phase case, where the phase transition has not started (or is not taken into
account...). Then, as for the air, a pressure law which expresses the pressure of the
water as a function of density and internal energy has to be supplied. We use a very
simple generalization of the perfect gas law, the sti�ened gas equation of state (see
(2.1)), which allows negative values for the pressure.

Compressible single �uids have been extensively studied and the main di�culty
here is the representation of the interface between the �uids. There are two main
approaches for treating interfaces:

• One can favor the Lagrangian interpretation of the �uid equations. The in-
terface then receives a particular treatment in the numerical method. This
approach leads to the family of the front-tracking methods. We will not con-
sider this kind of solution here.

• If the Eulerian point of view is preferred, the resulting scheme belongs to the
family of the front-capturing methods. No special treatment is applied to the
numerical cells that are crossed by the interface. We prefer the front-capturing
methods because they are more general and easier to implement than the front-
tracking methods.

A now classical and simple approach, proposed for example in [22], [19], is to locate
the interface by means of the level-set of a function which is convected with the �ow.
In this approach only an advection equation has to be added to the classical com-
pressible Euler model. One switches from one law (perfect gas) to the other (sti�ened
gas) according to the value of the level-set function. Because the sti�ened gas law
is a generalization of the perfect gas law, the level-set model is also equivalent, in
our case, to a model where the two coe�cients of the sti�ened gas law are convected
with the �ow. The interface is then located by the discontinuities of the pressure
law coe�cients. Our model is �nally made up of the Euler system (conservation of
mass, momentum and energy, equations (2.3)), two additional transport equations
(equations (2.5)) and the sti�ened gas law (equation (2.1)). This multi�uid model
presents a supplementary transport equation when compared to the level-set model
but it is generally easier to discretize.

Despite its simplicity and its mathematical perfection, this model leads to numer-
ous numerical di�culties as shown in many works among which we can cite [1], [18],
[19], [24], [3], [10], [23]... These di�culties have to be overcome before envisaging
practical applications. Of greatest concern are the spurious pressure oscillations that
appear near the material interface when the model is approximated by any conser-
vative �nite volumes scheme. The same kind of oscillations occurs in the simulation
of mixtures of perfect gases [1] or across numerically di�used shear interfaces [5].
Actually, it appears that classical conservative schemes (such as Godunov's, Roe's,
HLL, Rusanov's, etc.) su�er from a very slow convergence and a very bad preci-
sion on standard meshes when applied to the previous multi�uid model. Mulder,
Osher and Sethian did not mention this fact in [22] although they use in their work
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a classical conservative Roe scheme. Their trick to obtain acceptable numerical re-
sults is not detailed. Karni, in [18], points out this di�culty and proposes a simple
hybrid scheme to remove the pressure oscillations. The idea is to solve the classical
conservative equations far from the interface between the two �uids and a nonconser-
vative pressure equation near the interface. The resulting nonconservative scheme,
which is built in order to preserve constant pressure and velocity states, gives good
results. But it is not clear, in the paper of Karni, whether the conservation error
tends to zero with the step of the mesh. Indeed, as it is proved in the work of Hou
and LeFloch [17], nonconservative schemes generally converge to wrong solutions.
Then Abgrall in [2], Saurel and Abgrall in [24] propose a simpler approach based on
the nonconservative convection of well chosen pressure law parameters. As in the
work of Karni, the main idea in order to choose the good transported quantities,
is to construct a scheme which preserves the moving contact discontinuities. In a
one dimensional framework this is expressed by the fact that the pressure and the
velocity should not change if they are constant at the �rst time step, but a numer-
ical di�usion of the density is possible. The resulting scheme is quasi-conservative.
More precisely, the numerical �uxes for mass, momentum and energy are conserva-
tive whereas the numerical �uxes for the gas law coe�cients are not conservative.
Hence, the resulting scheme allows slight mass transfers between the gas and the liq-
uid. According to numerical experiments, this scheme seems to be converging. This
is not in contradiction with the previously cited result of Hou and LeFloch. Indeed,
according to the Rankine-Hugoniot jump relations, the velocity of the �ow and the
gas law parameters cannot present a simultaneous jump. Thus the nonconservative
products in the nonconservative transport equations are perfectly de�ned. Another
interesting �x to the spurious oscillations is proposed by Fedkiw, Aslam, Merriman
and Osher in [10], under the name of the Ghost Fluid Method. With the aid of a
ghost �uid, these authors propose a nonconservative Godunov scheme where only
one-�uid Riemann problems have to be solved. This method has been simpli�ed by
Abgrall and Karni in [3], under the name of the "Two-Flux Method". The Ghost
Fluid and the Two-Flux methods are completely nonconservative at the interface.
Numerical experiments (see [4]) seem to indicate that they converge, but there is
still no complete theoretical justi�cation of this "miracle".

Once the pressure oscillations have been corrected by an adequate scheme, still
other di�culties remain. The remedies have more to do with numerical engineering
than with mathematics but must be carefully assembled. In this way, we have to
deal with axisymmetry, unstructured meshes, implementation of the Riemann solver,
CFL condition...

This paper is thus organized as follows.

Following this Introduction, the second part is devoted to a presentation of the
mathematical model. We describe its mathematical properties. The main feature
is that the Riemann problem is globally well posed. This fact is important for the
numerical simulation when a Godunov scheme is used. On the other hand the model
allows negative values for the pressure. As we have already said, this can be justi�ed
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in some physical con�gurations.

The third part begins with an exposition of the pressure oscillations that appear
at the material interface in two-�uid simulations. We illustrate the pressure oscil-
lations thanks to a simple test case. We recall the bases of the construction of the
Saurel-Abgrall scheme. In the original Saurel and Abgrall paper [24], the construc-
tion is achieved with the help of the approximate Riemann solver of Rusanov. As
detailed in [23], we use here instead an exact Riemann solver. In order to solve the
convection of the pressure law coe�cients, we use a nonconservative numerical �ux
based on the velocity of the contact in the Riemann solution between two cells. The
Abgrall-Saurel reasoning is only valid for a multi�uid �ow where each �uid satis�es
the sti�ened gas law. For the sake of completeness, we also present another �nite vol-
umes scheme which preserves constant pressure-velocity states, and this for any gas
law. This scheme is a Lagrange plus projection scheme. In the Lagrangian step, the
contacts are perfectly resolved. The projection step is thus constructed in order to
preserve this property. We propose to project the pressure back on the Eulerian grid
instead of other conservative variables. The resulting scheme is valid for any pressure
law and can be generalized to higher dimensions. This scheme is not conservative for
the mass fraction it is thus precise only for moderate shocks. It is generally not con-
vergent. For strong shocks a hybrid scheme should be used as in the papers of Karni
[18], [19]: the idea would be to project the conservative variables near the shocks and
the pressure near the contacts. Thus the Lagrange-projection scheme is not used in
the sequel of the paper. It is slightly more di�usive and complex in its hybrid ver-
sion than the Saurel-Abgrall scheme. Furthermore in our application, the validity of
the sti�ened gas law is su�cient. The Lagrange-projection approach would be nec-
essary to take into account the vaporization of the liquid in cavitation zones (see [4]).

The fourth part is devoted to an exposition of several practical di�culties that
have to be solved before the application of the previous theory to an industrial
problem:

• The �rst adaptation concerns the construction of a 2D axisymmetrical scheme
based on the 1D scheme of Saurel and Abgrall that preserves moving contacts.
It is not trivial to extend the idea of Saurel and Abgrall to higher dimensions.
This is due to the fact that in higher dimensions the velocity is generally
not continuous through a contact discontinuity - only the normal component
is. Nkonga recently proposed a 2D scheme for resolving shear interfaces in [5].
His scheme perfectly resolves contact discontinuities aligned with the mesh, but
because it is not conservative for the momentum, it is probably not convergent.
In this paper we restrict ourselves to a scheme that preserves constant pressure-
velocity states. First, we write a 3D Godunov scheme using the rotationnal
invariance of the Euler equations, as usual. Some pressure law coe�cients are
convected in a nonconservative way, as in the Saurel-Abgrall scheme. Then we
restrict this scheme to an axisymmetrical mesh. This leads to a 2D axisym-
metrical scheme. The interest of this approach is to avoid complicated source
terms that arise from the axisymmetrical Euler equations. It must be pointed
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out that in the literature many authors (as [25], [20], etc.) do not follow this
(in our sense) correct approach and have to deal with singular source terms on
the axis of rotation.

• The second necessary adaptation deals with the boundary conditions. We
shall use in the application a classical treatment of the boundary conditions by
de�ning arti�cial cells on the boundary. In order to de�ne the physical values
of the arti�cial cells, we follow the approach of partial Riemann problems as
in the works of Dubois and LeFloch [9], [8].

• In our application, the geometry of the mesh is quite complex. This imposes
the use of unstructured meshes. We thus have to develop a special technique of
multiple time steps because the CFL condition given by the small cells is too
restrictive. On each edge we de�ne a local time step which is a power of two
times the minimal time step. This local time step satis�es the CFL condition
of the two neighboring cells. Then more time steps are performed on the small
cells than on the big cells, with possible "rendez-vous" because the ratio of two
di�erent time steps is a power of two. The resulting scheme is stable, and the
computation time is reduced by a signi�cant factor.

In the �fth part we present numerical results obtained in the case of an axisym-
metrical gas generator. As we have said before, the gas generator geometry is quite
complex. Several kinds of boundary conditions have to be considered. Because of
the presence of very small holes, the ratio between the biggest cell and the smallest
cell in the mesh is of the order of 10. All these facts justify our previous approach.
We are then able to present a complete simulation of this industrial system. Accord-
ing to preliminary measurements, our simulation gives, at least qualitatively, good
results. More details are given in [23].

The sixth part is the conclusion of the paper.

We then end the paper with an appendix (seventh part) where some computations
are detailed:

• First we perform classical computations concerning hyperbolicity and entropy.
We also recall the mathematical equivalence of the conservative equations with
the nonconservative form of Saurel-Abgrall. This fact would permit to prove
a Lax-Wendro� convergence result for the Saurel-Abgrall scheme and thus
presents some interest.

• Second, we prove that the Riemann problem for a two-�uid �ow governed by a
sti�ened gas law is globally well posed. In the case of strong rarefaction waves,
it is necessary to introduce negative pressures and/or vacuum regions. The
proof uses standard arguments but we have not found it in the literature. The
notations that we have to set are also useful for a rigorous de�nition of the
boundary conditions that are described in part 4.
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2 A two-�uids model for air-water �ows
2.1 Basic equations
We are interested in the �ow of a compressible continuous medium characterized by
its density ρ(t, x), its velocity u(t, x), and its internal massic energy ε(t, x). The time
variable is denoted by t, the space variable is x, and for simplicity we present the
model in one space dimension. The pressure p(t, x) of the medium is expressed by a
sti�ened gas Equation Of State (EOS)

p = (γ − 1)ρε− γπ. (2.1)

Because we are studying a �ow of several �uids, the two parameters γ and π of the
pressure law also depend on time and space

γ = γ(t, x) and π = π(t, x). (2.2)

Conservation of mass, momentum and energy lead to the three Euler equations

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0, (2.3)
(ρE)t + ((ρE + p)u)x = 0,

where E, the total massic energy, is de�ned by

E = ε +
u2

2
. (2.4)

On the other hand, the pressure law parameters are convected with the �ow

γt + uγx = 0,

πt + uπx = 0.
(2.5)

If the gas is supposed to be perfect and polytropic (this will always be the case in
the sequel), we set γ = γgas and π = 0. For the liquid, the sti�ened gas EOS is still
valid. It reads

p = (γ liq − 1)ρε− γ liqπliq.

The constants γ liq and πliq are chosen in order to match physical measurements.
Cocchi and Saurel in [7] have proposed the following values for γ liq and πliq

γ liq = 5.5,

πliq = 4900 bar.
(2.6)

These values are based on sound speed and shock speed measurements.
In this model, the interface between air and water can be located by the disconti-

nuity of γ(t, x) or π(t, x). It must be pointed out that mathematically, the model is
perfectly equivalent to a level-set model (as the one of [22]). In the level-set model,
equations (2.5) are replaced by the convection of a level-set function

ϕt + uϕx = 0, (2.7)
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and the pressure law (2.1) by

p = (γ(ϕ)− 1)ρε− γ(ϕ)π(ϕ). (2.8)

But it appears that numerically, it is not equivalent to discretize (2.3), (2.1), (2.5)
or (2.3), (2.8), (2.7).

2.2 Properties of the model
Our system (2.3), (2.1), (2.5) can be expressed in the classical form of a system
of conservation laws (the equivalence between the non-conservative form and the
conservative form is rigorously proved in section 7: see remark 7.3)

Wt + F (W )x = 0, (2.9)

with

W =




ρ

ρu

ρE

ργ

ρπ




, F (W ) =




ρu

ρu2 + p

(ρE + p)u
ργu

ρπu




,

and the pressure law (2.1).
If c is the sound speed associated with the pressure law (2.1), it veri�es

c2 = γ
p + π

ρ
. (2.10)

The hyperbolicity of the system (2.9) then implies that

p + π ≥ 0. (2.11)

Thus, the model admits negative pressure in the water. Is this physically correct?
Indeed, negative pressures can locally and brie�y appear in a liquid, they should then
be called tensions. But in the zone of negative pressures the liquid is in a metastable
state and is subject to vaporization. This phenomenon is called cavitation. For a
physical description of the cavitation, we refer to the book of Franc & al [11]. We
have proposed recently a simple adaptation of the sti�ened gas model to take into
account cavitation (see [16]) but before the phase transition, or if the appearance
of the tensions is very short, the sti�ened gas law is still a good physical model. It
must be pointed out that in our numerical simulations we will not use any special
treatment when negative pressures occur. Some authors (as [10]) have proposed to
correct the pressure by limiting it to zero when it is negative. This amounts to
forgoing energy conservation and we think that it is worse from a physical point of
view than negative pressures. It also causes additional numerical complications due
to the kink in the limited gas law. For example, it is necessary to envisage a centered
scheme on the cells where the pressure is limited.
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There is another (mathematical) reason to keep this model. If one considers the
Riemann problem associated to the system (2.9) and (2.1)

Wt + F (W )x = 0, (2.12)

W (0, x) =
{

Wl if x < 0,

Wr if x > 0.
(2.13)

The self-similar solution is noted

W (t, x) = R
(x

t
,Wl, Wr

)
.

Then it can be shown that the solution is unique for any left and right states Wl

and Wr satisfying the positivity of density and the hyperbolicity condition (2.11).
The fact that the global Riemann problem can be uniquely solved is well known in
the case of a mono�uid �ow. For example, it is solved in the book of Godunov [14]
for the case of a one-�uid �ow satisfying the sti�ened gas law. In the case of strong
rarefaction waves, the solution can present a region of vacuum in which

p = −πliq,

ρ = 0.
(2.14)

The solvability result can be extended to our model. For the sake of completeness,
we prove it in the section 7. The global solvability of the Riemann problem is
fundamental when one intends to use a Godunov type scheme, because it ensures
the robustness of the resulting scheme. Another important property of the model is
that it permits many equivalent formulations. Indeed, any function f(γ, π) of γ and
π is also convected with the �ow. For example, the system (2.9), (2.1) is equivalent
to

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

(ρE)t + ((ρE + p)u)x = 0,

(ρ/(γ − 1))t + (ρu/(γ − 1))x = 0,

(ργπ/(γ − 1))t + (ρuγπ/(γ − 1))x = 0,

(2.15)

with the sti�ened gas law (2.1).
It is also equivalent to the following nonconservative form

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

(ρE)t + ((ρE + p)u)x = 0,

(1/(γ − 1))t + u(1/(γ − 1))x = 0,

(γπ/(γ − 1))t + u(γπ/(γ − 1))x = 0,

(2.16)

with the sti�ened gas law (2.1).
The nonconservative form (2.16) plays a particular role among the other forms

on the numerical point of view as we will see in the next section.
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3 Nonconservative �nite volumes approximation
This section is devoted to a short and simple presentation of the pressure oscillations
phenomenon in the conservative Godunov schemes. It appears that for very simple
one-dimensional test cases, the classical �rst order conservative Godunov scheme
gives very bad results on every conservative form of the equations as (2.9) or (2.15).
We �rst exhibit one of these test cases which is a simple Riemann problem.
Then, we present two �xes which permit to avoid the pressure oscillations at the
interface:

• The �rst scheme is the Saurel-Abgrall scheme. The construction principle of
this scheme is to require that it preserves the moving contact discontinuities.
This condition leads to a nonconservative discretization of the transport of
some pressure law coe�cients. Let us recall that the conservative 1D Godunov
scheme also preserves moving contact discontinuities in the case of a one-�uid
�ow. The nonconservative correction is only useful for multi�uid �ows. The
Saurel-Abgrall correction cannot be applied to other pressure laws than the
sti�ened gas law.

• The second scheme is a Lagrange plus remap scheme. This scheme works for
any pressure laws but only for moderate shocks because it is not conservative
for the mass fraction. It is based on the simple remark that during the La-
grangian step, the contact discontinuities are perfectly solved. In the remap
step we thus project mass, momentum and energy as usual. We forget the
mass fraction conservation and instead project the pressure. In this way, the
pressure equilibrium of the two components is recovered.

These two schemes remove the pressure oscillation phenomenon and can be extended
without di�culty to higher dimensions. The Saurel-Abgrall scheme is less di�usive
than the Lagrange-plus-remap scheme. The Lagrange-plus-remap scheme is not con-
vergent in its present form. It is possible to improve its precision for strong shocks
by employing a hybrid version of the scheme: with the help of a level-set function, a
conservative scheme is used far from the interface and the Lagrange-plus-remap ap-
proach near the contact. Hybrid schemes are described for example in [19] and [12].
Because we concentrate on the sti�ened gas law, only the Saurel-Abgrall scheme is
used in the sequel of the paper for the numerical experiments in two dimensions.
In this section, we restrict ourself to a Riemann problem initial condition. For the
numerical experiments, we choose the following values

ρl = 10 kg/m3 ul = 50 m/s pl = 1.1× 105 Pa γl = 1.4 πl = 0,

ρr = 1 kg/m3 ur = 50 m/s pr = 1× 105 Pa γr = 1.1 πr = 0.
(3.1)

3.1 Failure of the Godunov scheme
In this section, we present numerical results obtained by a classical Godunov scheme.
The approximated system is (2.15), but we would obtain very similar results for any
other conservative formulation.
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Consider a space step h and a time step τ . The discretization points are xi =
ih, i ∈ Z. The cells Ci are centered on xi, Ci =]xi−1/2, xi+1/2[. We look for an
approximation of W in the cell Ci at time tn = nτ

Wn
i ' W (tn, x), x ∈ Ci.

A general conservative �nite volumes scheme reads

Wn+1
i = Wn

i −
τ

h
(Fn

i+1/2 − Fn
i−1/2).

In the case of the Godunov scheme, the numerical �ux is given by the resolution of
a Riemann problem at each cell interface xi+1/2 and takes the form

Fn
i+1/2 = F (R(0+ or −,Wn

i ,Wn
i+1)).

The initial conditions are (3.1). We plot only the pressure at time t = 1 ms. The
study interval is ]0, L[ with L = 1 m. The number of cells is �xed at N = 400 and
the CFL number is 0.7. We observe pressure oscillations at the contact discontinuity
(which is also the material interface between the two �uids). The results are in
Figure 3.1.

Figure 3.1: Godunov scheme, pressure (line: exact; dots: numeric)

3.2 Nonconservative transport of the pressure law coe�cients
The conservative scheme gives very bad results and cannot be used for higher di-
mensional simulations. On the other hand, numerical experiments indicate that the
situation is not better with another (approximate) Riemann solver. A second order
MUSCL extension would slightly improve the results but it is not su�cient.

In order to improve the precision of the Godunov scheme, it is possible as pro-
posed by Saurel and Abgrall in [24] to give up the last two conservation laws of the
system (2.15) and replace them by a nonconservative transport equation to obtain
(2.16). We show now why the special nonconservative form (2.16) plays a particular
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role for a �nite volumes approximation. For this, let us consider a general conserva-
tive (for the mass, momentum and energy) upwind scheme. Suppose that we want
to approximate a general moving contact discontinuity of constant velocity v and
pressure p. We suppose that v À 1 and that the constant �ow is supersonic. Then,
because the speed v > 0, the upwind scheme reads

ρn+1
i = ρn

i −
τ

h

(
(ρu)n

i − (ρu)n
i−1

)
, (3.2)

(ρu)n+1
i = (ρu)n

i −
τ

h

(
(ρu2 + p)n

i − (ρu2 + p)n
i−1

)
, (3.3)

(ρε + ρ
u2

2
)n+1
i = (ρε + ρ

u2

2
)n
i − (3.4)

τ

h

(
(ρεu + ρu

u2

2
+ pu)n

i − (ρεu + ρu
u2

2
+ pu)n

i−1

)
.

We now impose that the scheme preserves the moving contact discontinuities, i.e.
that un+1

i = un
i = v and pn+1

i = pn
i = p. We obtain

ρn+1
i = ρn

i −
τ

h

(
(ρv)n

i − (ρv)n
i−1

)
, (3.5)

(ρv)n+1
i = (ρv)n

i −
τ

h

(
(ρv2 + p)n

i − (ρv2 + p)n
i−1

)
, (3.6)

(ρε + ρ
v2

2
)n+1
i = (ρε + ρ

v2

2
)n
i (3.7)

−τ

h

(
(ρεv + ρv

v2

2
+ pv)n

i − (ρεv + ρv
v2

2
+ pv)n

i−1

)
.

The two �rst equations reduce then to

ρn+1
i = ρn

i −
τ

h
v

(
ρn

i − ρn
i−1

)
, (3.8)

while the last equation becomes

(ρε)n+1
i = (ρε)n

i −
τ

h
v

(
(ρε)n

i − (ρε)n
i−1

)
. (3.9)

But because ρε = (p + γπ)/(γ− 1), the only compatible approximations for γ and π
are

(
1

γ − 1

)n+1

i

=
(

1
γ − 1

)n

i

− τ

h
v

((
1

γ − 1

)n

i

−
(

1
γ − 1

)n

i−1

)
,

(
γπ

γ − 1

)n+1

i

=
(

γπ

γ − 1

)n

i

− τ

h
v

((
γπ

γ − 1

)n

i

−
(

γπ

γ − 1

)n

i−1

)
.

(3.10)

This is an upwind approximation of the transport equations

(1/(γ − 1))t + v(1/(γ − 1))x = 0,

(γπ/(γ − 1))t + v(γπ/(γ − 1))x = 0.
(3.11)

Any scheme that reduces to (3.10) for constant velocity and pressure will then pre-
serve moving contact discontinuities.
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We propose now such a scheme. First, we de�ne the interface values by the
resolution of Riemann problems at the points xi+1/2:

Wn
i+1/2 = R(0,Wn

i ,Wn
i+1).

For density, momentum and energy, the classical conservative approach is employed:

ρn+1
i = ρn

i −
τ

h
((ρu)n

i+1/2 − (ρu)n
i−1/2),

(ρu)n+1
i = (ρu)n

i −
τ

h
((ρu2 + p)n

i+1/2 − (ρu2 + p)n
i−1/2), (3.12)

(ρE)n+1
i = (ρE)n

i −
τ

h

(
((ρE + p)u)n

i+1/2 − ((ρE + p)u)n
i−1/2

)
.

On the other hand, an upwind nonconservative scheme is used for the last two equa-
tions of (2.16). This nonconservative scheme is based on the contact discontinuity
velocity of the Riemann problems solved at the points (xi+1/2). It reads

αn+1
i = αn

i −
τ

h
(min(un

i+1/2, 0)(αn
i+1 − αn

i ) + max(un
i−1/2, 0)(αn

i − αn
i−1)), (3.13)

where the quantity α is 1/(γ−1) or γπ/(γ−1). This choice is slightly di�erent from
the one of Saurel and Abgrall in [24] which is based on the approximate Riemann
solver of Rusanov. It is easy to check that the scheme (3.13) reduces to (3.10) for
constant velocity and pressure states.

With the scheme (3.12), (3.13), the results on the same test case as above are
given in Figure 3.2. There is an evident improvement.

Figure 3.2: Saurel-Abgrall scheme, pressure (line: exact; dots: numeric)

Unfortunately, the previous reasoning cannot be extended to a pressure law which
is not linear with respect to ρε. To be more general we thus present in the next
paragraph a general approach to deal with non-linear pressure laws.
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3.3 A Lagrange plus remap scheme for two-�uids �ow
In this section we describe the results obtained with a Lagrange plus remap scheme.
In order to have a clear description of the scheme, we will recall the bases of the
Lagrange scheme construction (see [13]).

Notations
We wish to approximate the system of conservation laws.

Wt + F (W )x = 0. (3.14)

For this purpose, we consider an increasing sequence of instants (tn)n∈N and a se-
quence of subdivisions of space de�ned by the points (xn

i )i∈Z,n∈N which satisfy

∀i ∈ Z, ∀n ∈ N, xn
i < xn

i+1.

The point xn
i will be the center of the cell Cn

i . In order to de�ne properly these cells,
we thus introduce the boundary points

xn
i+1/2 =

xn
i + xn

i+1

2
.

The cell Cn
i is then

Cn
i =

]
xn

i−1/2, x
n
i+1/2

[
.

The time steps are
τn = tn+1 − tn.

The lengths of the cells are

hn
i = xn

i+1/2 − xn
i−1/2.

In a Lagrange scheme, the cell boundaries move between the time step tn and tn+1

with the velocity un
i+1/2. Thus,

xn+1
i+1/2 = xn

i+1/2 + τnun
i+1/2.

A CFL condition has to be provided in order that the points xn+1
i+1/2 stay ordered.

Scheme construction
We suppose that at time tn we know an approximation Wn of the exact solution W .
The approximation is supposed to be constant in each cell

W (tn, x) ' Wn(x) = Wn
i , x ∈ Cn

i .

We then compute exactly for a time τn, the entropic solution of

Vt + F (V )x = 0,

V (0, x) = Wn(x), x ∈ R.
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This exact resolution is possible under a CFL condition.
The new approximation of W at time tn+1 is then de�ned as the mean value of

the exact solution in the new cells

Wn+1
i =

1
hn+1

i

∫

Cn+1
i

V (τn, x)dx.

The Riemann problem reads

Ut + F (U)x = 0,

U(0, x) =
{

Wl x < 0,

Wr x > 0.

The solution is self-similar; as before it is noted

R(x/t,Wl,Wr) = U(t, x).

In order to have a simpler expression of the scheme, we express the conservation law
in the space-time trapezoid Q whose parallel sides are Cn

i and Cn+1
i .

0 =
∫

Q
(Wt + F (W )x)dx ∧ dt =

∫

∂Q
(F (W )dt−Wdx).

The contour integral in the right hand side is the sum of four contributions (bottom,
top, right and left)

∫
∂Q (F (W )dt−Wdx) =

∫
Cn

i
−Wn

i dx

+
∫
Cn+1

i
Wn+1

i dx

+
∫ t=τn

t=0

(
F (R(un

i+1/2,W
n
i ,Wn

i+1))−R(un
i+1/2,W

n
i ,Wn

i+1)u
n
i+1/2

)
dt

− ∫ t=τn

t=0

(
F (R(un

i−1/2,W
n
i−1,W

n
i ))−R(un

i−1/2, W
n
i−1,W

n
i )un

i−1/2

)
dt.

This gives

0 = hn+1
i Wn+1

i − hn
i Wn

i

+τn

(
F (R(un

i+1/2,W
n
i ,Wn

i+1))−R(un
i+1/2,W

n
i ,Wn

i+1)u
n
i+1/2

)

−τn

(
F (R(un

i−1/2,W
n
i−1,W

n
i ))−R(un

i−1/2,W
n
i−1,W

n
i )un

i−1/2

)
.

(3.15)

When the velocities at the cell boundaries un
i+1/2 are zero, the scheme reduces to the

classical Godunov scheme. Another important case is when the velocity un
i+1/2 is

equal to the contact discontinuity velocity of the Riemann problem between the cells
Cn

i and Ci+1. With this choice, a moving contact is perfectly resolved. The problem
is now to come back properly from the Lagrangian grid

(
Cn+1

i

)
to the Eulerian grid

(Cn
i ). This is the goal of the remap step.
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Remap step
Let us �rst describe the remap step of the classical Lagrange and projection scheme.
Actually, the formula (3.15) de�nes a value W

n+1/2
i of the conservative variables in

the new cells Cn+1
i . This value has now to be averaged on the old cells Cn

i . This is
usually done with the formula

Wn+1
i =

τ

h
max(un

i−1/2, 0)Wn+1/2
i−1 − τ

h
min(un

i+1/2, 0)Wn+1/2
i+1 +

(1− τ

h
max(un

i−1/2, 0) +
τ

h
min(un

i+1/2, 0))Wn+1/2
i .

Our scheme is then a very simple correction of the Lagrange-projection scheme. The
projection is the same for density, momentum and energy. But instead of projecting
the last conservative variable ρ/(γ − 1), we project the pressure according to the
formula

pn+1
i =

τ

h
max(un

i−1/2, 0)pn+1/2
i−1 − τ

h
min(un

i+1/2, 0)pn+1/2
i+1 +

(1− τ

h
max(un

i−1/2, 0) +
τ

h
min(un

i+1/2, 0))pn+1/2
i .

It is then possible to compute γn+1
i thanks to the pressure law (according to (3.1), the

value of π is indeed 0). In test cases where π 6= 0 another quantity has to be projected
in order to recover γn+1

i and πn+1
i . It could be for example the temperature.

Numerical results
With the Lagrange-projection scheme, we obtain the results in Figure 3.3. They
are comparable to the results of the Saurel-Abgrall approach but are a little bit
more di�usive. This extra di�usion is classical and is of course due to the double
projection: Godunov averaging and remap averaging. This method can be applied
though to more general pressure laws.

Figure 3.3: Lagrange and remap scheme, pressure (line: exact; dots: numeric)
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4 Axisymmetrical extension of the Godunov scheme
4.1 Scheme construction and properties
In this paragraph, we present the extension of scheme (3.12, 3.13) to an industrial
axisymmetrical case. We will �rst describe a 3D scheme without source term for
which stability under a CFL condition is well established. Then, using special meshes
with a rotational invariance we will deduce the 2D axisymmetrical scheme keeping
the same CFL stability condition. This 2D scheme presents a pressure source term
that is thus handled explicitly.

Consider a mesh of a 2D open set Ω ⊂ R2, that is to say a family of open sets
(Ωk)1≤k≤N satisfying

Ω =
⋃

k

Ωk,

i 6= j ⇒ Ωi ∩ Ωj = ®.

We suppose also that (x, z) ∈ Ω ⇒ x > 0. A 3D mesh can be generated by a
rotation of Ω around the axis x = y = 0 in a referential (x, y, z). Introducing
cylindrical coordinates (r, φ, z):

x = r cosφ,

y = r sinφ,

z = z,

we de�ne the family (Qk,l) , 1 ≤ k ≤ N , 0 ≤ l ≤ P − 1 by

Qk,l =
{

(x, y, z) ∈ R3, (r, z) ∈ Ωk and φ ∈]
2(l − 1/2)π

P
,
2(l + 1/2)π

P
[
}

.

In order to simply de�ne the 3D scheme, we will slightly change the notations. The
velocity −→u is now a vector −→u = (u1, u2, u3)T . W will be now the vector of conser-
vative variables (ρ, ρ−→u , ρE)T , with E = ε +

−→u ·−→u
2 . The vector of nonconservative

variables is denoted by Y = (α, β)T with

α =
1

γ − 1
, β =

γπ

γ − 1
. (4.1)

We de�ne also a mixed vector as V = (W,Y )T .
In 3D, the Euler equations read (Id is the identity matrix of size d× d)

ρt +∇ · (ρ−→u ) = 0,

(ρ−→u )t +∇ · (ρ−→u ⊗ −→u + pI3) = 0,

(ρE)t +∇ · ((ρE + p)−→u ) = 0.

Introducing the three �uxes:

G1(W ) = (ρu1, ρu1u1 + p, ρu1u2, ρu1u3, (ρE + p)u1),

G2(W ) = (ρu2, ρu2u1, ρu2u2 + p, ρu2u3, (ρE + p)u2),

G3(W ) = (ρu3, ρu3u1, ρu3u2, ρu3u3 + p, (ρE + p)u3),
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and the vector �ux G = (G1, G2, G3)T , the conservative equations can also be written

Wt +∇ ·G(W ) = 0.

Whereas for the nonconservative variables α and β, the equations are

Yt + −→u · ∇Y = 0,

and the pressure law is still the sti�ened gas law which becomes

p =
1
α

ρε− β

α
. (4.2)

Now, a 3D scheme reads
∫

Qk,l

V n+1
k,l − V n

k,l + τ

∫

∂Qk,l

F (V n
k,l, V

n
k′,l′ , ν) = 0,

where V n
k,l is the approximation of V in Ωk,l at time tn, ν is the outward normal vec-

tor to Qk,l on ∂Qk,l and Qk′,l′ denotes the neighbors of Qk,l along its boundary. The
quantity F (·, ·, ν) is the numerical �ux that we will now precisely de�ne. The de�ni-
tion of the numerical �ux is based on the rotational invariance of the Euler equations.
This is very classical (see [13]). The only originality is the special treatment of the
nonconservative variables.

First, a unit vector ν = (ν1, ν2, ν3)T is given. ν can also be written as ν =
(cosφ sin θ, sinφ sin θ, cos θ). We de�ne then the rotation matrix

M(ν) =




cos(φ) sin(θ) sin(φ) sin(θ) cos(θ)
− sin(φ) cos(φ) 0

− cos(φ) cos(θ) − sin(φ) cos(θ) sin(θ)


 ,

which satis�es M(ν)ν = (1, 0, 0)T , and

N(ν) =




1 0
M(ν)

0 I3


 .

Consider now two states Va and Vb. In order to compute F (Va, Vb, ν), several
steps are performed:

1. Two rotated states are de�ned by Ṽa = M(ν)Va and Ṽb = M(ν)Vb.

2. The following augmented Riemann problem in the normal direction is then
solved

W̃t + G1(W̃ )x = 0,

Ỹt + ũ1Ỹx = 0,

Ṽ (0, x) =

{
Ṽa if x < 0,

Ṽb if x > 0,

and the solution of this Riemann problem at x/t = 0 is denoted by Ṽ ∗.
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3. An interface state is recovered by the inverse rotation V ∗ = M(ν)−1Ṽ ∗.

4. The numerical �ux is then set to
F (Va, Vb, ν) = (G(W ∗) · ν, min(u∗ · ν, 0)(Y ∗

b − Y ∗
a ))T . (4.3)

It must be noted that this numerical �ux is nonconservative on the Y variables,
as in the Saurel-Abgrall scheme that we presented in 1D cases. It can be proved,
as in the 1D case, that the resulting scheme preserves constant pressure and
velocity states.

In our case the scheme will reduce to a 2D one thanks to several simpli�cations.
First, thanks to the rotation matrix J (φ) = N(cosφ,− sinφ, 0) the axisymmetry

condition reads
V n

k,l′ = J(
2(l′ − l)π

P
)V n

k,l .

Thus, the velocity vector can be written −→u k,l = (uk cos(2lπ
P ), uk sin(2lπ

P ), vk)T and
the other variables do not depend on l. In this way, the scheme has only to be written
on the cells Qk,0:∫

Qk,0

(V n+1
k,0 − V n

k,0) + τ

∫

∂Qk,0

F (V n
k,0, J

(
2l′π
P

)
V n

k′,0, ν) = 0.

Denoting Vk,0 by Vk, this scheme then becomes
∫

Ωk

(V n+1
k − V n

k )rdr dz + τ

∫

∂Ωk

F (V n
k , V n

k′ , ν)rdσ+

τP

2π

(∫

Ωk

F (V n
k,0, J

(
2π

P

)
V n

k,0, ν)rdr dz +
∫

Ωk

F (V n
k,0, J

(−2π

P

)
V n

k,0, ν)rdr

)
= 0.

It is then natural to let P tend to ∞. In the Riemann problems of the two last
integrals only symmetric rarefaction waves occur. Thus those two terms reduce to a
pressure term∫

Ωk

(V n+1
k − V n

k )rdr + τ

∫

∂Ωk

F (V n
k , V n

k′ , ν)rdσ− τ

∫

Ωk

(0, pn
k , 0 · · · 0)T rdr = 0. (4.4)

We recover, of course, an approximation of the axisymmetrical equations, namely
(ρr)t + (ρur)x + (ρvr)z = 0,

(ρur)t + (ρu2r + pr)x + (ρuvr)z = pr,

(ρur)t + (ρvur)x + (ρv2r + pr)z = 0,

(ρEr)t + ((ρE + p)ur)x + ((ρE + p)vr)z = 0,

αt + uαx + vαz = 0,

βt + uβx + vβz = 0.

One advantage of this approach is that the pressure source term can be handled
explicitly without modifying the 3D CFL condition. We have also avoided axisym-
metrical source terms which are singular on the axis of rotation. Finally, the resulting
scheme preserves constant pressure and velocity states. The construction of a 2D
scheme that preserves contact discontinuities with discontinuous tangential velocity
is proposed in Nkonga [5].

International Journal on Finite Volumes 18



Practical computation of axisymmetrical multi�uid �ows

4.2 Boundary conditions
For a boundary cell Ωk, an arti�cial value V n

k′ has to be de�ned for the part of
∂Ωk that meets the boundary. For simplicity, suppose that the normal vector is
ν = (1, 0). We index by (i) (as �inside�) the components of V n

k and by (o) (as
�outside�) the (unknown) components of V n

k′ . Several boundary conditions can then
be used:

• �Supersonic� inlet:
Vo = given state.

• �Supersonic� outlet:
Vo = Vi.

• Pressure imposed (�subsonic� outlet). The outside state with pressure po is
linked to the inside state by a one-wave (shock or rarefaction). With the
notations of �7.2, we �nd

ρo = 1/Hi(po),

uo = ui −Xi(po),

vo = vi,

αo = αi,

βo = βi.

• Pressure and density imposed (�subsonic� inlet). Pressure po and density ρo of
the outside state are given. The nature of the outside state (αo, βo) and the
tangential velocity (vo) are also supposed to be known. Here, the outside state
is linked to the inside state by a one-wave (shock or rarefaction) and a contact
discontinuity. This permits to compute the unknown normal velocity

uo = ui −Xi(po).

• Mirror state. This boundary condition is used at a solid boundary. All the
components of the state Wo are the same as those of state Wi but the normal
velocity

uo = −ui.

It is important here to point out that the terminology �subsonic� or �supersonic� has
nothing to do with the true nature of the �ow at the boundary. It is only linked to
what is expected when Wo ' Wi. Indeed, we can imagine imposing a �supersonic�
inlet boundary condition and observing, at this boundary a supersonic out�ow! The
resolution of a Riemann problem ensures that the redundant information will be
forgotten, if necessary. For more details about this technique, we refer to Dubois
and his theory of partial Riemann problems [8].
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4.3 Optimisation of the CFL number
An important constraint in any �nite volumes scheme is the Courant-Friedrichs-Lewy
condition. It expresses that, for any �nite volume Ωk the time step τ must verify

τ <
surf(Ωk)

length(∂Ωk)V ∗ , (4.5)

where V ∗ is the maximal wave speed in the solution of all the Riemann problems
at the cell interfaces. For a classical Godunov scheme on an unstructured mesh, it
is proved in [6], that the CFL condition (4.5) implies the positivity of the scheme
(the density remains >0) and the fact that it is entropic for any Lax entropy. We
assume that this is still true for the Saurel-Abgrall scheme. In the case where large
and small cells are mixed, the CFL condition on the small cells imposes the global
CFL condition. The mixing of large and small cells can be imposed by the geometry
(an example is given below) and not necessarily by a required precision of the com-
putation. In order to reduce the computational cost it is possible to use several time
steps, a small one for the small cells and a bigger one for the big cells. Then, several
time steps are performed on the small cells and less time steps are performed on the
big cells. The time reduction of the computation can be signi�cant.

The time marching algorithm can be formalized as follow.
First, in a initialization procedure, an ideal time step is computed for each cell

Ωk. Let δ be the desired CFL number (for example δ = 0.7). The local time step is
de�ned by

τk = δ
surf(Ωk)

length(∂Ωk)V ∗ . (4.6)

The maximal time step in the mesh is noted τmax. In the same way, the minimal
time step is τmin. Let n0 be the smallest integer such that 2n0+1τmin > τmax We will
then say that the cell Ωk has a CFL level of j if

2j−1τmin ≤ τk < 2jτmin. (4.7)

Thus a CFL level of 1 corresponds to the smallest cells and a CFL level of n0

corresponds to the biggest cells. We de�ne also a CFL level for the edges. An edge
El has a CFL level which is the smallest CFL level of its two neighboring cells. In
order to advance by a global time step 2n0τmin, the algorithm is:

• for all integer j = 1 . . . n0 do

� for all edges of CFL level ≤ j do
∗ compute the �ux
∗ distribute it to the two neighboring cells

� enddo
� update only the cells of level ≤ j

• enddo

In this way, the scheme remains conservative and stable. The gain in computation
time is of order 2n0 if the number of small cells is small.
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5 An industrial application
5.1 Description
The industrial system that we wish to simulate is a gas generator whose geometry
and working order are indicated in Figure 5.1. The gas generator is made of a
combustion chamber (top), a cooling chamber (middle part) and an evacuation pipe
(bottom, not represented). Only the working order in the cooling chamber will be
numerically simulated.

The cooling chamber and the evacuation pipe are separated by a metallic mem-
brane. This membrane can withstand a pressure of 40 bar. The cooling chamber is
around 1 m high, it is itself split into several chambers: a central one and a secondary
one which communicate through an intermediate chamber and two series of holes.

At time t = 0 ms, the cooling chamber is �lled with motionless air and water
at a pressure of 5 bar. Gas at high pressure (∼ 100 bar) and high temperature
(∼ 2500 K) are then produced in the combustion chamber. They rush into the
cooling chamber and impact on the water surface causing a shock wave to propagate
in the water. When it reaches the bottom membrane, it smashes it. A part of the
water is then drained in the evacuation pipe, the rest of the water is transferred into
the secondary chamber where it is �nally re-injected through very small holes in the
draining pipe and mixed with the gas still rushing from the combustion chamber.
The entire process, from the beginning of combustion to the beginning of the liquid
re-injection has an approximate duration of 50 ms. This justi�es the fact that we
neglect vaporization. Of course, for longer simulations, vaporization should be taken
into account.

As one can note in Figure 5.1, the real geometry of the cooling chamber is not
axisymmetrical due to the presence of re-injection holes near the draining pipe and
connection holes between the several chambers. For the simulation we thus replace
these holes by slits of equivalent area. The simpli�ed axisymmetrical geometry is
represented in Figure 5.2. Here we plot the density. Red corresponds to density
values of the liquid (∼ 1000 kg/m3) whereas black corresponds to density values of
the gas (∼ 10 kg/m3).

5.2 Results
A part of the mesh is represented in Figure 5.3. It appears that very small cells are
necessary in the injection slits. The CFL stability condition is thus very restrictive
on these cells. In order to avoid a overly long computation we use the algorithm
described in �4.3. With this technique it is possible to perform a 50 ms simulation in
5 hours CPU on an 1.4 GHz computer. It should be noted that the exact Riemann
solver requires at most 5 Newton iterations for convergence to within 10−10p0 where
p0 is the atmospheric pressure. Most of the zones in the �uid �ow do not require as
many iterations - 2 or 3 only. In conclusion, the classical Godunov scheme is not as
expensive as is so often proclaimed in the literature.

We then run the scheme presented in �4.1 and �4.2. Gravity is neglected. The
boundary conditions and initial conditions are depicted in Figure 5.2. The boundary
conditions are imposed according to the technique described in �4.2:
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• At the top entrance of the cooling chamber, which corresponds to the exit of
the combustion chamber, we impose pressure p(t) and density ρ(t). The time
evolution of these quantities is determined by experimental measurements. The
pressure increases from 10 to 120 bar in several milliseconds. We observe that
the speed increases from 10 to 700 m/s. The �ow thus remains subsonic.

• At the bottom exit, the boundary condition is, at �rst, a solid wall condition.
When the pressure reaches 40 bar (this occurs around 6 ms), the boundary
condition is changed into an out�ow condition. We then impose an outside
pressure of 5 bar. The pressure then drops progressively from 40 to 5 bar, and
the velocity increases from 0 to 1500 m/s. The �ow is thus supersonic at the
end of the computation.

Then, in Figures 5.4, 5.5 and 5.6 iso-densities for several instants are plotted. We
can point out the following:

• At 10 ms, the gas begins to push the water. The free surface is slightly de-
formed. We observe a smoothing of the density pro�les due to the numerical
di�usion of the interface. But despite the �rst order scheme (and thanks to a
quite �ne mesh..)., the interface is easily recognized.

• The instant 15 ms is after the bursting of the membrane. We can see that
the central part of the water in the cooling chamber has been drained into the
evacuation pipe.

• At instants 20 ms and 25 ms, water has already entered the secondary chamber,
forming a jet against its boundary. The jet is numerically di�used but still
visible.

• At instant 50 ms, the jet has impacted on the free surface in the secondary
chamber. We observe that the re-injection has started (small jet at the bot-
tom).

• In Figure 5.4, we plot pressure in order to demonstrate the appearance of
negative values of the pressure. These negative values appear in the bottom
nozzle where a strong drop of pressure is probably triggering cavitation.

Measurements on a real gas generator were performed at the �Direction des Construc-
tions Navales� (DCN) in Toulon (France). Excellent agreement is observed in the
central part of the cooling chamber. For example, the bursting time of the separat-
ing membrane is predicted with an error of a few percent. More precise comparisons
with experiments have now to be performed in the secondary chambers.

6 Conclusion
In this paper we have �rst recalled basic facts on compressible multi�uid �ows. We
have also carefully described the spurious pressure oscillations phenomenon that
arises in any conservative Godunov scheme applied to multi�uid �ows.
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Figure 5.1: Gas generator

(a) gas-generator (start) (b) gas-
generator
(middle)

(c) gas-
generator
(end)
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Figure 5.2: Boundaries

(a) axisymmetrical geometry
and boundaries

Figure 5.3: Mesh

(a) Mesh (partial view)
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Figure 5.4: Cavitation

(a) density (kg/m3) at 10 ms

(b) pressure (bar) at 10 ms
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Figure 5.5: Density plots (kg/m3)

(a) density at 15 ms

(b) density at 20 ms
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Figure 5.6: Density plots (kg/m3)

(a) density at 25 ms

(b) density at 50 ms
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We focused on two remedies to suppress these oscillations. The �rst �x has been
proposed by Saurel and Abgrall in [24]. It is based on a nonconservative transport
of the pressure law coe�cients and works only for a sti�ened gas pressure law. The
second �x is, to our knowledge, new and is based on a Lagrange plus projection
scheme. In the projection step we project the pressure instead of the pressure law
coe�cients. The resulting scheme is more di�usive than the Saurel-Abgrall scheme
but also more general (it works for any pressure law).

Because in our application the sti�ened gas law is su�cient we decided to ex-
ploit the Saurel-Abgrall scheme in a 2D axisymmetrical and complex geometry. We
had then to deal with some practical problems: negative pressures, axisymmetry,
unstructured meshes, boundary conditions, multi time steps.

After having solved these problems, we were in a situation to present a useful
industrial numerical simulation.

Future studies could now follow several directions:

• The scheme should be extended to second order. We have not done it because
in axisymmetrical cases, the classical second order extensions (as the MUSCL
method of Van Leer [26]) are surprisingly not straightforward.

• The second important aspect is to be able to deal with true cavitation, i.e.
the vaporization of the liquid in a metastable state. Some progress has been
obtained in the case of a liquid-vapor �ow in [16]. The case of the three-phase
�ow with air, liquid and vapor is being studied. Some preliminary results can
be found in [4].

7 Appendix
7.1 Entropy and hyperbolicity
We study here the hyperbolicity of (2.9), (2.1). For this purpose, it is classical to
introduce the speci�c entropy

s0 =
p + π

ργ
= s0(W ).

A simple computation shows that if W is a regular solution of (2.1), (2.9), then s0

satis�es the advection equation

s0
t + us0

x = 0.

Thus, for any function g of s0, γ and π an additional conservation law is satis�ed by
ρg(s0, γ, π)

(ρg(s0, γ, π))t + (ρug(s0, γ, π))x = 0.

If W → S(W ) = ρg(s0, γ, π) is convex, we get in this way all the Lax entropies of
system (2.9), (2.1). For a proof of this result, we refer to the review paper of [15].
According to Mock's theorem [21] the convexity of S would then imply hyperbolicity.
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Here, we prefer to carry out a more direct calculation. Always for regular solutions,
we set

Y =




ρ

u

s0

γ

π




.

We then have
Yt + B(Y )Yx = 0,

with

B(Y ) =




u ρ 0 0 0
γ p+π

ρ2 u ργ−1 (p+π) ln(ρ)
ρ −1

ρ

0 0 u 0 0
0 0 0 u 0
0 0 0 0 u




.

The eigenvalues of B are (u − c, u, u, u, u + c) with c2 = γ p+π
ρ . Thus, if ρ > 0, the

system is hyperbolic if and only if

p + π ≥ 0.

Remark 7.1 When p tends to −π keeping the speci�c entropy constant, which is
the case in a rarefaction wave, we get:

ρ = C (p + π)1/γ → 0.

Thus, the limiting case p = −π corresponds to a zero density ρ = 0. This means
that, in a liquid, vacuum corresponds to a negative value of the pressure.

7.2 Global resolution of the Riemann problem
As in the case of gas dynamics for one �uid, the �elds 1 and 3, which correspond to the
eigenvalues u−c and u+c are genuinely non-linear whereas the �eld 2 corresponding
to the multiple eigenvalue u is linearly degenerate (contact discontinuity).

At present, we have written several forms (conservative or not) for the convection
equations. All these forms are formally equivalent. It is important to verify that they
are correct also for discontinuous solutions.

Let us consider a discontinuity propagating with velocity σ. Indexes (a) and (b)
will be relative to the two sides of the discontinuity. Rankine-Hugoniot relations
read, in this case

σ(Wa −Wb) = F (Wa)− F (Wb).

Introducing the relative velocity to the discontinuity and the speci�c volume

v = u− σ, τ =
1
ρ
,
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the jump relations become

M = ρava = ρbvb,

ρav
2
a + pa = ρbv

2
b + pb,

(ρa(εa +
v2
a

2
+ pa)va = (ρb(εb +

v2
b

2
) + pb)vb,

Mγa = Mγb,

Mπa = Mπb.

The last two relations implie that γ and π can jump only at the contact discon-
tinuity (when M = 0). On the other hand, a simple computation shows that γ and
π are Riemann invariants for the �elds 1 and 3.

Remark 7.2 These two properties imply that in genuinely non-linear �elds the
coe�cients γ and π are constant. Outside the contact discontinuity, the computa-
tions are thus identical to the case of a single �uid. These classical computations can
be found for example in the book of Godlewski and Raviart [13]. They are brie�y
sketched below.

Remark 7.3 We have also given a sense to the nonconservative products in the
last two transport equations in (2.16) because u and the pressure law coe�cients
cannot present a simultaneous jump.

Solving the Riemann problem means �nding the weak entropy solution of

Wt + F (W )x = 0,

W (0, x) =
{

Wl if x < 0,

Wr if x > 0.

This solution is supposed to be self-similar

W (t, x) = R
(x

t
,Wl, Wr

)
.

It is made up of constant states separated by shock waves, rarefaction waves or a
contact discontinuity. It is thus of the form

R(ξ,Wl,Wr) =





Wl if ξ < λ−1 ,

WI if λ+
1 < ξ < λ2,

WII if λ2 < ξ < λ−3 ,

Wr if λ+
3 < ξ,

where the unknowns are WI , WII and the velocities λ2, λ±i , i = 1, 3 which satisfy
λ−1 ≤ λ+

1 < λ2 < λ−3 ≤ λ+
3 .

Furthermore, if λ−i < λ+
i (resp. if λ−i = λ+

i ) then the i-wave is a rarefaction
wave (resp. a shock of velocity σ = λ−i = λ+

i ). When the i-wave is a rarefaction,
the computation of W = R(ξ, Wl, Wr) , for λ−i < ξ < λ+

i is classically carried out by
expressing that the three Riemann invariants are constant in the i-rarefaction (see
[13]).
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On the other hand, we have pI = pII = p?. If no vacuum occurs, we can also write
uI = uII = u?. Moreover, from remark 7.2, we have that γI = γl, γII = γr, πI = πl,
πII = πr. It is then classical to compute the 1- and 3-waves from the pressure p?

common to the two intermediate states WI et WII . For this purpose, we introduce
the functions

ha(p?) = τa
(γa + 1)(pa + πa) + (γa − 1)(p? + πa)
(γa + 1)(p? + πa) + (γa − 1)(pa + πa)

, a = l or r,

Φa(p?) =
√

(p? − pa)(τa − ha(p?)),

ga(p?) = τa

(
pa + πa

p? + πa

)1/γa

,

Ψa(p?) =
2

γa − 1
(τaγa(pa + πa))1/2

(
(
p? + πa

pa + πa
)

γa−1
2γa − 1

)
,

Xa(p?) =
{

Φa(p?) if p? > pa,

Ψa(p?) if p? < pa,

Ha(p?) =
{

ha(p?) if p? > pa,

ga(p?) if p? < pa.

We thus get
uI = ul −Xl(p?),

uII = ur + Xr(p?),

τI = Hl(p?),

τII = Hr(p?),

and the Riemann problem is solved when p? is known.
If no vacuum region appears, the following theorem holds.

Theorem 7.4 Let p0 = min(πl, πr). If

ur − ul ≤ − (Xl(−p0) + Xr(−p0)) , (7.1)

then the Riemann problem has a unique solution. The pressure p? ≥ −p0 is the
unique solution of

ul −Xl(p?) = ur + Xr(p?).

This result is quite similar to the case of the Riemann problem for a single �uid. For
the proof we refer (for example) to [14], [13].

When inequality (7.1) is not true, a vacuum has to be introduced. This vacuum
region appears in the �uid whose coe�cient π is the smallest.

Theorem 7.5 If
ur − ul > − (Xl(−p0) + Xr(−p0)) ,

the Riemann problem has still an entropy solution. For example, if p0 = πl, then we
have p? = −p0, ρI = 0, u? = uII = ur + Xr(p?). uI = ul −Xl(p?), and, in general
uI 6= uII .
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Proof: Suppose that p0 = min(πl, πr) = πl. In the two open sets x < u?t and
x > u?t, the computation of the 1- and 3-wave curves is identical to the mono-
�uid case. Thus, W (t, x) is indeed an entropy solution of the Riemann problem in
these two open sets. It is then su�cient to verify that, at the contact discontinuity
x/t = u?, Rankine-Hugoniot jump relations are satis�ed, together with the entropy
condition. The discontinuity velocity is σ = u?. We thus have vII = u? − σ = 0.
Mass conservation ρIvI = 0 = ρIIvII is then satis�ed. In the same way, ρIv

2
I + p? =

p? = ρIIv
2
II + p?. The jump relation for the conservation of ρϕ is also satis�ed:

ρIvIϕI = 0 = ρIIvIIϕII . For the energy jump relation, we use the fact that the
1-wave is necessarily a rarefaction because p? = −p0 ≤ pl. However, in a rarefaction,
when p → −π, then ρε+π → 0 (see remark 7.1) and we have (ρIεI + p?)vI +ρI

v3
I
2 =

0 = (ρIIεII + p?)vII + ρII
v3

II
2 . Finally, the entropy inequality (which degenerates to

an equality) is also satis�ed: ρIvIsI = 0 = ρIIvIIsII .
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