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Abstract

We prove that, under a cfl condition, the explicit upwind finite vol-

ume discretization of the convection operator C(u) = ∂t(ρu) + div(uq),

with a given density ρ and momentum q, satisfies a discrete kinetic

energy decrease property, provided that the convection operator satis-

fies a ”consistency-with-the-mass-balance property”, which can be simply

stated by saying that it vanishes for a constant advected field u.
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1 Introduction

Let ρ and q be a given scalar and a given vector smooth function respectively, defined
over a domain Ω of R

d, d = 2 or d = 3, and such that the following identity holds
in Ω:

∂tρ + divq = 0. (1)

Let u be a smooth scalar function defined over Ω. If q vanishes on the boundary,
the following stability identity is known to hold:

∫

Ω

[
∂t(ρu) + div(uq)

]
udx =

1

2

d

dt

∫

Ω

ρu2 dx. (2)

When ρ stands for the density and q for the momentum, equation (1) is the usual
mass balance in variable density flows. Choosing for u a component of the velocity,
equation (2) yields the central argument of the kinetic energy conservation theorem.

A discrete analogue of this result has been proven in [2] for an implicit discretiza-
tion of the convection operator for u, i.e. C(u) = ∂t(ρu) + div(uq), and is a central
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argument of the stability of schemes for low Mach number flows [1], barotropic
monophasic [2] or diphasic [3] compressible flows. The aim of the present short note
is to prove that the same stability result holds for an explicit upwind discretiza-
tion of C(u), under a cfl condition. This result yields the (conditional) stability of
the semi-implicit version (i.e. with an explicit convection term in the momentum
balance) of the discretizations for incompressible or compressible barotropic Navier-
Stokes equations studied in [1, 2, 3], provided that the other terms in these schemes
remain unchanged: the viscous term, discretized in an implicit way, and the pressure
gradient term, with a discrete gradient built as the transposed of the discrete diver-
gence to allow a control of the pressure work. Such a semi-implicit discretization
may be more efficient and accurate, especially for highly transient cases, where the
time step limitation induced by the cfl condition is not too restrictive.

For the sake of readability, we establish this stability result in two steps: in
Section 2, we address the case of a constant density flows, then we extend the proof
to compressible flows in Section 3.

2 The incompressible case

Let Ω be split in control volumes Ω̄ = ∪K∈MK̄. We denote by Eint the set of internal
faces of the mesh, and by σ = K|L the internal face separating control volumes K

and L of M.

In this section, we suppose that the density is constant, and, setting arbitrarily
ρ = 1, the discrete finite volume convection operator which we study takes the
following form:

∀K ∈ M, |K| CK =
|K|

δt
(uK − u∗

K) +
∑

σ=K|L

FK,σ u∗
σ, (3)

where FK,σ stands for the discrete mass flux coming out from K through σ, the
superscript ∗ means that the quantity is taken at the beginning of the time step,
and u∗

σ denotes the upwind (with respect to FK,σ) approximation of u∗ on σ, i.e.
u∗

σ = u∗
K if FK,σ ≥ 0 and u∗

σ = u∗
L otherwise. We suppose that the evaluation of

the (given) fluxes FK,σ from the field q is conservative, i.e. that, for an internal
face σ = K|L, FK,σ = −FL,σ. Note that the fluxes through the external faces are
implicitly set to zero (which is consistent with a given q supposed to vanish at the
boundary). The incompressibility of the flow reads, at the discrete level:

∀K ∈ M,
∑

σ=K|L

FK,σ = 0. (4)

Let us define the local cfl number associated to the mesh K by:

cflK =
δt

|K|

∑

σ=K|L

max (FK,σ, 0) =
δt

|K|

∑

σ=K|L

−min (FK,σ, 0) (5)
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(the second equality resulting from the incompressibility relation (4)), and the global
cfl number by:

cfl = max
K∈M

cflK . (6)

The stability of the convection operator defined by (3), i.e. the discrete analogue
of (2) for a constant density flow, is stated in the following lemma.

Lemma 2.1 Let cfl be defined by (5)-(6). For K ∈ M, let CK be defined by (3),
and let Relation (4) hold. If cfl ≤ 1, then:

∑

K∈M

|K| uK CK ≥
1

2 δt

∑

K∈M

|K|
[
(uK)2 − (u∗

K)2
]
.

Proof – We have
∑

K∈M |K| uK CK = T1 + T2 with:

T1 =
∑

K∈M

|K|

δt
(uK − u∗

K) uK , T2 =
∑

K∈M

uK

∑

σ=K|L

FK,σ u∗
σ.

Using the identity 2a (a − b) = a2 + (a − b)2 − b2, valid for any real numbers a

and b, we get for T1:

T1 =
1

2 δt

∑

K∈M

|K|
[
(uK)2 − (u∗

K)2
]
+

1

2 δt

∑

K∈M

|K| (uK − u∗
K)2.

We now turn to T2, which is split into T2 = T2,1 + T2,2 as follows:

T2,1 =
∑

K∈M

u∗
K

∑

σ=K|L

FK,σ u∗
σ, T2,2 =

∑

K∈M

(uK − u∗
K)

∑

σ=K|L

FK,σ u∗
σ.

We now notice that, by definition of the upstream value u∗
σ, we have:

FK,σ u∗
σ = |FK,σ|

u∗
K − u∗

L

2
+ FK,σ

u∗
K + u∗

L

2
,

so T2,1 reads:

T2,1 =
∑

K∈M

u∗
K

∑

σ=K|L

|FK,σ|
u∗

K − u∗
L

2
+

∑

K∈M

u∗
K

∑

σ=K|L

FK,σ

u∗
K + u∗

L

2
. (7)

First the incompressibility relation (4) then the conservativity yield for the second
term:

∑

K∈M

u∗
K

∑

σ=K|L

FK,σ

u∗
K + u∗

L

2
=

∑

K∈M

u∗
K

∑

σ=K|L

FK,σ

u∗
L

2
= 0.

Reordering now the first summation in (7), we get:

T2,1 =
1

2

∑

σ∈Eint, σ=K|L

|FK,σ| (u∗
K − u∗

L)2.
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Using once again Equation (4) to substract FK,σ u∗
K to all the fluxes at the faces of

the mesh K, we have for T2,2:

T2,2 =
∑

K∈M

(uK − u∗
K)

∑

σ=K|L, FK,σ≤0

FK,σ (u∗
L − u∗

K),

where the notation
∑

σ=K|L, FK,σ≤0
means that the sum is restricted to the faces

where the quantity FK,σ is non-positive. Reordering the summations, we get:

T2,2 =
∑

σ∈Eint, σ=K|L, FK,σ≤0

FK,σ (uK − u∗
K) (u∗

L − u∗
K),

where the above notation means that we perform the sum over each internal face σ,
and we denote L the upwind control volume and K the downwind one. Using now
the Cauchy-Schwarz and Young inequalities, we obtain:

T2,2 ≥ −
1

2

∑

σ∈Eint, σ=K|L

|FK,σ| (u∗
L−u∗

K)2−
1

2

∑

σ∈Eint, σ=K|L, FK,σ≤0

|FK,σ| (uK −u∗
K)2.

The last summation reads:
∑

σ∈Eint, σ=K|L, FK,σ≤0

|FK,σ| (uK − u∗
K)2 =

∑

K∈M

(uK − u∗
K)2

∑

σ=K|L

−min (FK,σ, 0).

Gathering the final expressions for T1, T2,1 and T2,2, we obtain:

∑

K∈M

|K| uK CK ≥
1

2 δt

∑

K∈M

|K|
[
(uK)2 − (u∗

K)2
]

+
1

2

∑

K∈M

(uK − u∗
K)2

[ |K|

δt
−

∑

σ=K|L

−min (FK,σ, 0)
]

,

which yields the conclusion. �

3 The compressible case

We now suppose that the flow is compressible, or, more precisely, that the density
varies with time and space and that the momentum and the density are linked by
the usual mass balance; the discrete mass balance now reads:

∀K ∈ M,
|K|

δt
(̺K − ̺∗K) +

∑

σ=K|L

FK,σ = 0, (8)

and we study the following convection operator:

∀K ∈ M, |K| CK =
|K|

δt
(̺KuK − ̺∗Ku∗

K) +
∑

σ=K|L

FK,σ u∗
σ, (9)

with the same definition for u∗
σ as in the previous section.
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Let us define the local cfl number associated to the mesh K by:

cflK =
δt

|K| ̺K

∑

σ=K|L

−min (FK,σ, 0), (10)

the definition (6) of the global cfl number remaining unchanged.

The stability of the convection operator defined by (9), i.e. the discrete analogue
of (2), is stated in the following lemma.

Lemma 3.1 Let cfl be defined by (10) and (6). For K ∈ M, let CK be defined by
(9) and let Equation (8) hold. If cfl ≤ 1, then:

∑

K∈M

|K| uK CK ≥
1

2 δt

∑

K∈M

|K|
[
̺K (uK)2 − ̺∗K (u∗

K)2
]
.

Proof – We write
∑

K∈M

|K| uK CK = T1 + T2 with:

T1 =
∑

K∈M

|K|

δt
(̺K uK − ̺∗K u∗

K) uK , T2 =
∑

K∈M

uK

∑

σ=K|L

FK,σ u∗
σ.

In T1, let us first split (̺K uK − ̺∗K u∗
K) uK = ̺K (uK − u∗

K)uK + (̺K − ̺∗K)u∗
K uK

and then use the identity 2a (a − b) = a2 + (a − b)2 − b2, valid for any real number
a and b, to get:

T1 =
1

2 δt

∑

K∈M

|K| ̺K

[
(uK)2 − (u∗

K)2
]
+

1

2 δt

∑

K∈M

|K| ̺K (uK − u∗
K)2

+
1

δt

∑

K∈M

|K| (̺K − ̺∗K) u∗
K uK

︸ ︷︷ ︸

T1,1

.

We now write T2 as:

T2 =
∑

K∈M

u∗
K uK

∑

σ=K|L

FK,σ +
∑

K∈M

uK

∑

σ=K|L

FK,σ (u∗
σ − u∗

K).

By (8), the first summation in this relation is the opposite of T1,1. As in the incom-
pressible case, we split the second term in T2,1 + T2,2 + T2,3 with:

T2,1 =
∑

K∈M

u∗
K

∑

σ=K|L

FK,σ u∗
σ,

T2,2 =
∑

K∈M

(uK − u∗
K)

∑

σ=K|L

FK,σ (u∗
σ − u∗

K),

T2,3 = −
∑

K∈M

(u∗
K)2

∑

σ=K|L

FK,σ.
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We remark that T2,1 takes the same expression as in the incompressible case, so, by
the same computation:

T2,1 =
1

2

∑

K∈M

(u∗
K)2

∑

σ=K|L

FK,σ +
1

2

∑

σ∈Eint, σ=K|L

|FK,σ| (u∗
K − u∗

L)2.

Using (8) for the first sum, we get:

T2,1 + T2,3 =
1

2

∑

K∈M

|K|

δt
(̺K − ̺∗K) (u∗

K)2 +
1

2

∑

σ∈Eint, σ=K|L

|FK,σ| (u∗
K − u∗

L)2.

We now remark that the first of these terms combines with the first term of T1 as
follows:

1

2 δt

∑

K∈M

|K|
[

̺K

[
(uK)2 − (u∗

K)2
]
+ (̺K − ̺∗K) (u∗

K)2
]

=

1

2 δt

∑

K∈M

|K|
[
̺K (uK)2 − ̺∗K(u∗

K)2
]
.

Gathering all terms, we conclude the proof by controlling the term T2,2, which is
the same as in the incompressible case, and can be absorbed by the same terms. �
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imation of the Navier-Stokes convection operator for low-order non-conforming
finite elements. International Journal for Numerical Methods in Fluids, available
online, 2010.

[2] T. Gallouët, L. Gastaldo, R. Herbin, and J.-C. Latché. An unconditionally stable
pressure correction scheme for compressible barotropic Navier-Stokes equations.
Mathematical Modelling and Numerical Analysis, 42:303–331, 2008.

[3] L. Gastaldo, R. Herbin, and J.-C. Latché. An unconditionally stable finite
element-finite volume pressure correction scheme for the drift-flux model. Math-
ematical Modelling and Numerical Analysis, 44:251–287, 2010.

International Journal on Finite Volumes 6


