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Abstract

This article analyses the convergence of the Vertex Approximate Gradi-
ent (VAG) scheme recently introduced in Eymard et al. 2012 for the
discretization of multiphase Darcy flows on general polyhedral meshes.
The convergence of the scheme to a weak solution is shown in the par-
ticular case of an incompressible immiscible two-phase Darcy flow model
with capillary diffusion using a global pressure formulation. A remarkable
property in practice is that the convergence is proven whatever the dis-
tribution of the volumes at the cell centers and at the vertices used in the
control volume discretization of the saturation equation. The numerical
experiments carried out for various families of 2D and 3D meshes confirm
this result on a one-dimensional Buckley Leverett solution.

Key words : Finite volume, two-phase Darcy flows, diffusion fluxes,
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1 Introduction

Recently, a new discretization of diffusive equations, the Vertex Approximate Gra-
dient (VAG) scheme, using both cell and vertex unknowns, has been introduced
in [16]. The cell unknowns can be eliminated locally without any fill-in in the
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sense that no additional connections between vertices are introduced in the elimi-
nation. It leads after elimination of the cell unknowns to a vertex-centered scheme
with a typical 27 points stencil for 3D topologically Cartesian meshes. The VAG
scheme is consistent, unconditionally coercive, compact, and easy to implement on
general polyhedral meshes (with possibly non planar faces) and for heterogeneous
anisotropic diffusion tensors. In addition, it is exact on cellwise affine solutions for
cellwise constant diffusion tensors. It has exhibited a good compromise between
accuracy, robustness and CPU time in the recent FVCA6 3D benchmark [15].

The VAG scheme has been extended to multiphase Darcy flows in [18] and [17]
and leads to a conservative finite volume discretization with fluxes connecting each
cell to its vertices. It can be viewed as a control volume method widely used in the
oil industry (see [3] and [21]) provided that control volumes are defined both at the
cell centers and at the vertices.

Compared with usual cell-centered finite volume approaches, the main interests
of the VAG discretization are twofold: first the single phase Darcy fluxes lead to a
coercive discretization for arbitrary cells and permeability tensors and second the
cell unknowns can still be eliminated without fill-in from the linear system leading to
a large reduction of the set of unknowns in the case of tetrahedral meshes compared
with cell-centered approaches.

Compared with control volume finite element discretizations introduced in [4]
and which have been applied to multiphase Darcy flows for example in [19], [7], the
VAG fluxes are not defined as the integral of the normal velocity on a dual mesh
interfaces. This allows us to decouple the definition of the fluxes from the definition
of the control volumes. This is why we can obtain coercive single phase Darcy fluxes
for arbitrary cells and permeability tensors which is not the case for control volume
finite element methods. In addition, in our method, we only need to define a volume
at each vertex and at each cell which are simply obtained by any conservative redis-
tribution of the volume of each cell to its vertices preserving the non negativity of
the remaining volumes at the cells. In pratice these volumes are distributed in order
first to respect the main heterogeneities of the porous media and second to balance
as much as possible the volumes between the surrounding cells and vertices (see [17]).

The main objective of this paper is to strenghten the theoretical background of
this approach by proving the convergence of the VAG discretization whatever the
choice of the volumes at the cell centers and at the vertices in the particular case of
a two-phase incompressible immiscible Darcy flow model.

The first convergence result for a finite volume discretization of two-phase Darcy
flow models has been obtained for cell-centered two point flux approximation schemes
on admissible meshes in [20] and [12]. In [12] the convergence is obtained for the
usual phase pressures and saturations formulation using a phase by phase upwinding
of the mobilities. To our knowledge, this is the only convergence result for such a
formulation widely used in petroleum engineering and the proof uses crutially the
two point nature of the flux approximation. In [20] the convergence is obtained for
the global pressure formulation introduced in [6] (see also [2]). This latter conver-
gence result has been recently extended in [5] to the case of the Sushi finite volume
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discretization [13] which applies to general polyhedral meshes and heterogeneous
anisotropic porous media. Let us also quote [8] providing error estimates for the
two phase Darcy flow model in global pressure formulation using a Mixed Finite
Element Method for the pressure equation and a Finite Element discretization of
the saturation equation.

Our proof is an adaptation of the result given in [5] for the Sushi scheme in
global pressure formulation to the case of the VAG discretization. One of the main
additional difficulty is to show the convergence of the scheme whatever the choice
of the volumes at the cell centers and at the vertices. This requires to work with
different representations of the discrete saturation for which we need to estimate
their differences in L? norm, as well as to derive new discrete Poincaré inequalities.

The outline of the paper is the following. We first recall in section 2 the VAG
discretization for a diffusion equation on general polyhedral meshes and derive the
VAG fluxes between each cell and its vertices. In section 3, the two-phase flow
model and its VAG discretization are introduced. They rely on the so-called global
pressure formulation and on a fully implicit Euler integration in time. The VAG
discretization is used for the Darcy fluxes as well as for the capillary diffusion, and
the fractional flow term is approximated using a first order upwind scheme. Then,
the weak convergence of the discrete pressure and the strong convergence of the
discrete saturation to a weak solution of the two-phase flow problem are derived
up to a subsequence. In section 4, the convergence of the scheme is assessed on a
Buckley Leverett one-dimensional solution for various families of 2D and 3D meshes
mainly taken from the FVCA5 and FVCAG6 [15] benchmarks.

2 Vertex centered Discretization on generalised polyhe-
dral meshes

2.1 Vertex Approximate Gradient discretization of the Darcy fluxes

Let © be a bounded polyhedral subdomain of R? of boundary 9Q = Q \ Q.
For a.e. (almost every) @ € Q, A(x) denotes a 3-dimensional symmetric positive
definite matrix such that that there exist A > A > 0 with

Allg]? < €A ()¢ < AlI€]1%,
for all ¢ € R3 and for a.e. = € Q.

We consider the following diffusion equation

div(=AVa) = f in Q,
=0 on 09,

with homogeneous Dirichlet boundary condition. Its variational formulation: find

u € H}(Q) such that
/AVU-VU dzc:/fv dx
Q Q
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for all v € H}(Q), admits a unique solution % provided that f € L?*(Q) which is
assumed in the following.

Following [16], we consider generalised polyhedral meshes of Q. Let M be the
set of cells that are disjoint open subsets of Q such that {J,.\, % = Q. For all
Kk € M, x,, denotes the so-called “center” of the cell x under the assumption that x
is star-shaped with respect to x,. Let F denote the set of faces of the mesh which
are not assumed to be planar, hence the term “generalised polyhedral cells”. We
denote by V the set of vertices of the mesh. Let V., Fx, V, respectively denote the
set of the vertices of kK € M, faces of k, and vertices of o € F. For any face o € Fj,
we have V, C V. Let Mg denote the set of the cells sharing the vertex s. The set
of edges of the mesh is denoted by £ and &, denotes the set of edges of the face
o € F. It is assumed that for each face o € F, there exists a so-called “center” of
the face x, such that

Lo = Z /Ba,s Ts, with Z 50,5 =1,

s€Vs s€EVo

where 8,5 > 0 for all s € V,. The face o is assumed to match with the union of the
triangles 75 . defined by the face center x, and each of its edge e € &;.

Let Vipe = V \ 092 denote the set of interior vertices, and Vezy = V N O the set
of boundary vertices.

The previous discretization is denoted by D and we define the discrete space
Wp ={v, € Ryug € Rk € M,s € V},
and its subspace with homogeneous Dirichlet boundary conditions on Ve,
Wg ={vs ERuis e R,k e M;s €V ]|vg=0for s € Vey}.

The VAG scheme introduced in [16] is based on a piecewise constant discrete
gradient reconstruction for functions in the space Wp. Several constructions are
proposed based on different decompositions of the cell. Let us recall the simplest
one based on a conforming finite element discretization on a tetrahedral sub-mesh,
and we refer to [16, 14] for two other constructions sharing the same basic features.

For all ¢ € F, the operator I, : Wp — R such that

Ia(v) = Z Ba,svsa

s€Vs
is by definition of @, a second order interpolation operator at point x,,.
Let us introduce the tetrahedral sub-mesh 7 = {1y s, € € E5,0 € Fyyk € M}

of the mesh M, where T} ;. is the tetrahedron defined by the cell center x,, and the
triangle T5 . as shown by Figure 1.
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For a given v € Wp, we define the function 77v € H'(Q) as the continuous
piecewise affine function on each tetrahedron T of 7 such that wyv(x,) = vy,
mru(s) = vs, and myv(a,) = I, (v) for all Kk € M, s € V, 0 € F. We define the
space Vi = {mrv,v € Wp} C H'(Q) and the space VP = {m7v,v € W2}, which
lies is HJ(€2). The nodal basis of this finite element discretization will be denoted
by 1k, s, K € M, s € V.

Following [16], the Vertex Approximate Gradient (VAG) scheme is defined by
the discrete variational formulation: find u € W3 such that

ap(u,v) = /Qf(:n) mrv(x) dz for all v € W2,
with ap the bilinear form defined by
ap(u,v) = /QVm—u(w) - A(zx) Vrru(z) de for all (u,v) € WS x W2.
Let us define for all Kk € M and s,s’ € V,,

ity = [ V(@) A@) Vi (@) da.

One has

ap(u,v) = Z Z Z ai/,s(us/ — ) (Vs — k),

KEM sEVy s'€Vy

leading to the definition of the following conservative fluxes between a given cell
Kk € M and its vertices s € V,,

F.s(u) = Z CLZ:S(U,.C —uy) = —/A(m)Vﬂru - Vns de, (1)

and
Fsr(u) = —Fis(u).

Then, the VAG discretization is equivalent to the following discrete system of con-
servation laws: find u € Wg such that

Z Fis(u) = /f(:c) Ne(x) de  for all ke M,

SGVN

Y Faw(u) = / f(x) ns(x) de  for all s € Vin.
Q

HGMS

3 Convergence analysis for a two-phase flow model

We consider the following two-phase incompressible Darcy flow model. The gravity is
not considered for the sake of simplicity but all the subsequent convergence analysis
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extends to the case with gravity following the same arguments as in [5].

(

div(—)\(S) Avp) — kT 4k on Qy,
$OS + div(— F(SIN(S) Avp) n div(—Ach(S)) = k°(.,S) on Qi
k(.5) = F(SEF + F(S)k~ on Qr,, @)
S=0,p=00n 002 x(0,t5),
S|t=o = Sp on ,

where @, := Q2 x (0,ty). Let us refer to [9] for an existence of a weak solution and
a uniqueness result for such a two phase Darcy flow model.

Assumptions on the data :
(H1) ¢ € C(]0,1]), ¢(0) = 0, is a strictly increasing piecewise continuously
differentiable Lipschitz-continuous function with a Lipschitz constant L.

(Hz2) The functions A, f € C(]0,1]) are Lipschitz-continuous; we denote by Ly
and Ly the corresponding Lipschitz constants.

(Hs) A is such that 0 < A < A(s) for all s € [0, 1];
(H4) f is a nondecreasing function and it satisfies f(0) =0, f(1) = 1;

(Hs) So € L>®(Q); and ¢ € L>(Q) is such that 0 < ¢ < ¢(x) < ¢ for a.e. in
x e

(He) kT, k= € L>°(Q) are such that kT > 0,k~ < 0 a.e. in ©, S € L>(Q) is
such that S € [0,1] a.e. in .

The scheme that we propose does not guarantee that S remains in [0, 1], thus
we have to extend all the functions of S on R, which is done in following way.

(H7) The functions A, f are continuously extended by a constant outside of
(0,1); ¢ is linear outside of [0,1] with ¢(s) = Lys for all s < 0 and ¢(s) — ¢(1) =
L,(s—1) forall s >1.

Weak solution :

A function pair (S, p) is a weak solution of the problem (2) if

() S eL2(0,t512());

(i) 9(S) € L2(0,ty: HA(©));

(iii) p € L0, ty; Hy ());

(iv) for all ¢ € L2(0,t5; H5(Q)) with 9,0 € L*(Qy,), (-, T) = 0, S and p satisfy
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the integral equalities

/ / SO dadt— / Soo(-,0) de + / / FISIAS) AVp - Vep dadt
/ / AV@(S) - Vo dedt = / / k°(., S)y deedt,

(3)
/0 tf /Q A(S)AVp - Vi) dedt = /0 ! /Q (k™ + k7 )ep deedt.

VAG discretization of the two-phase flow model:

and

Let us denote by |x| the volume of the cell k: || = [ da. Let us introduce the
weights af > 0, k € M, s € V,; N Vi representing the fractions of volume of a cell
k distributed to a vertex s of the cell k. They are chosen such that the remaining

volume at each cell is non negative i.e. (1 = D eV Vi ai) > 0 for all K € M.
Then, we define the volumes

Mys = |k for all Kk € M,s € V., N Vint,
msg = Z My s for all s € Vi,
HEMS (4)

my, = |k| — Z mys forall Kk € M,

SEVMVint

which are such that
> m=Y k= [ de
VEMUVins KEM

Let wy, Wk s, 8 € VN Vjn be some partition of the cell k£ such that fwﬁ dx = m, and
fwm,s dx = mys, and let us set wg = U%MS wy,s for all s € Vi, Let the porosity
¢, of each v € M U V4 be defined such that

my Gy =/w ¢(x) de,

v

and arbitrarily chosen in the interval [¢, ¢] for a vanishing volume m,,. It results
from the hypothesis H5 that

?ggb,,gafor all v € MU Vipg. (5)

Our main objective is to prove the convergence of the VAG scheme for the above
two-phase flow model whatever the choice of the volume fractions .. This flexibility
in the choice of the volumes is a key feature to adapt the VAG scheme for two-phase
flows in heterogeneous media. In that case, as explained in [17], the volume fraction
o is chosen proportional to the ratio between the permeability of the cell x and the
sum of the permeabilities of all cells around the vertex s. This choice is modified in
the case of different rocktypes in the cells around the vertex s in such a way that
only cells sharing the same given rocktype distribute a non zero fraction of their
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volume to the vertex s. This guarantees that the rocktype is uniquely defined at the
vertex s. We refer to [17] for details.

The spatial VAG discretization of the two-phase flow model (2) is obtained fol-
lowing [17] writing the mass conservation of both phases in the control volumes w,
and wg = UneMs wy,s using the VAG fluxes Fj 5.

For the sake of simplicity, for NV € N* we will consider the uniform time dis-

cretization t" = ntﬁf,n =0, -, N, of the time interval [0,¢;] with t° = 0, tV = tr
and with the constant time step At = th We consider an Euler implicit time

discretization scheme. Thus, we obtain the following set of discrete equations:

S Vi =ma(kt k), KEM, (6)
s€Vx
Z _V;:fs = ms(k;_ + ks_)a S € Vintv (7)
KEMSs
Sf? — Sf?il n n n on
qb/fmﬂT + Z f(SH,S) VH,,S + FK,S(QO(S )) = mﬁ?kl{’ , K€ Ma (8)
s€Vx
Sg — Sgil n n n on
¢SmST + Z _f(sm,s) V/{,s - FK,S((P(S )) = msks7 , 8 € Vint, (9)
KEMs
V/:S = )‘(S.Z)FK,S(pn)’ S € VK?’% € Ma
kg™ = kfF(SP) + Ky, F(S)), v € MU Ving,
S;l =0, pg =0, s € Veat, (10)

for alln = 1,--- , N, where for all functions 8 = S°, ™ k+ k~, 3, is defined for all
Ve M U V’int by

mVﬂV = 5(.’13) d.’I,‘, (11)
and arbitrarily chosen in [—|| 8] o (q), |8]| Lo ()] for m, = 0, and where the following
upwind approximation

n [ STif Foe(p") >0,
Sies = { Sroif Fes(p™) <0, (12)

of the saturations has been used.

Let us remark that the conservation equations (6), (8) in each cell x only involve
the cell unknowns p, and S; and the vertex unknowns pg, Ss for all s € V.. It
results that, at each iteration of the Newton algorithm used to solve the nonlinear
system (6)- (10), the Schur complement of the Jacobian system eliminating the cell
unknowns and the cell linearized conservation equations can be computed without
any fill-in. It leads to a linear system on the vertex unknowns only with the same
stencil than typical P1 or Q1 finite element discretizations. The computation of this
Schur complement involves the inversion of a 2 by 2 matrix for each cell and at each
Newton iteration which can be shown to be nonsingular for a small enough time
step.

International Journal on Finite Volumes 8
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3.1 Discrete functional setting
Let u € Wp, we recall that w7u is the piecewise affine function

7TTU<w): Z uunu($)‘

veEMUVY

We define two other function reconstructions from Wp to L2(€2), first the cellwise
constant reconstruction

mTmu(x) = u, for all € k, Kk € M,
and second the following piecewise constant reconstruction:
mpu(x) = u, for all ¢ € wy,, v € M U Vjp.

Note that mpu does not depend on the ug for s € V.

In the following, for any continuous function g : R — R, and for any u € Wp, the
function g(u) € Wp is defined such that g(u), = g(u,) for all Kk € M and g(u)s =
g(ug) for all s € V. Note that we clearly have the properties mag(u) = g(ma(u))

and mpg(u) = g(mp(u)).

LEMMA 3.1 For all u € Wp, one has

Z (v — vs) Fles(u) = /A(a:)VﬂTu -Vrrv de, (13)

SEVx K

and
AVrrulZagy < S (e — us) Fus(u) < K| VarulZa .
SEVK

Proof: For all u € Wp, one has by definition of the flux (1)

Fis(u) = — / A(x)Vrru - Vs de.
We deduce that for all u,v € Wp

Z (v — vs) Fles(u) = /A(:B)Vm-u -Vrru de,

SGVN

which yields the lemma from our assumption on A. O

Let pr denote the insphere diameter of T, hp the diameter of T, and T, C T
the set of tetrahedra of k. We set h, = maxyc7, hr and ht = maxpeT hr.

We will assume in the convergence analysis that the family of tetrahedral sub-
meshes 7 is shape regular and that the number of vertices of each cell k is uniformly
bounded. Hence let us set

hr

0+ = max —
T TeT pT7

International Journal on Finite Volumes 9
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a.nd
Y = Imax #V .
M KEM "

We have the following lemma.

LEMMA 3.2 There exist C7 > 0 and Cy > 0 depending only on yr¢ and 67 such
that, for all u € Wp and all kK € M, one has

Culkl(u2 + 7 u2) < Imrulifagy < Calrl(u2 + > u2)), (14)
SEV;@ SEVK
and
K
2 s — ux)? < |[Vrrulfa o Cz | |2 > (us . (15)
sEV s€Vx

Proof: Let u(x) be a linear function on a tetrahedra 7" € 7, of volume |T|. We
denote by u;, ¢ = 0,---,3, its nodal values at the vertices of T'. There exist two
reals D1 > 0 and Ds > 0 independent on T' and u such that

3
Dillullfairy < |71 uf < Dallullfaer), (16)
i=0
and two reals E; > 0 and Fy > 0 depending only on 7 and independent on w such
that
IT\

BVl ~w0)* < Bal|Vulapye (a7

HMw

Let us first mention that the the 1nequaht1es (16) and (17) are true for any regular
tetrahedron T'. Now, let Fpr be an affine mapping from 7" to T. Denoting & = uo F
one has that

I TlllllE2ry = TG 7

which implies (16) for any 7. Let Jpr be the Jacobian matrix of the mapping Fr,

| Jr|

setting ||Jr|| = SUDg£0 [ ODE Can show that (see e.g. [10])
h ha
l7r| <=L and |lJ7") > L
Pr

Therefore for any 1" we have

hz

) N g

(22 190, 0 < T < (
Let u € Wp and k € M, it results that one has

Difrrulfay < > ITI(uR +ud+ud+ud) < Daflrruliag,
T=x,xss8' €Ty
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Since there exist F; > 0 and F5 > 0 depending only on vyxz; and 67 such that
T < |k| < B|T| for all T € T,, K € M it proves (14) using the convexity

: 2 2 2
estimate 0 <wug <> oy, Bosts <D ooy U
Similarly we have that

T
Ei|Vrrulfame < D (]L |)2 ((ua — ) + (us — ug)® + (ug — uﬁ)2>
T=x,xs88"ETx r
< E2||V7TTU|’i2(K)d

and 0 < (uy — ux)? < Zsevg Bos(us — ug)? < ZSGVO—(US — u,)?. Since there exist
G1 > 0 and Gy > 0 depending only on yuq and 67 such that G1h, < hy < Gah,, for
all T € T, kK € M, it proves (15). O

LEMMA 3.3 There exist C7 > 0 and Cy > 0 depending only on v, and 67 such
that for all u € W2

[mpullLz) < Cillmrulliz) < Co [[Vrrullizg) (18)

Proof: From the continuous Poincaré inequality and from w7u € H} () there exists
C, depending only on the domain €2, such that for all u € Wg

[mrullLe) < C IVarullieq)e-

From (14) we deduce that there exists C' depending only on ¢ and €7 such that
for all u € Wp

> (mn(uﬁ)%r > mﬁ,s(us)2> <) |f€!<(un)2+ Z(US)Q) < Cllmrullf2 (),

KEM SEVMVint KEM s€EVx

which ends the proof of the lemma. [J

LEMMA 3.4 There exists C > 0 depending only on vy and 67 such that, for all
u € Wp, one has the estimate

lmpu — 7T7'u”L2(Q) + ||mpu — 7TMu||L2(Q) <C h’]’”Vﬂ'TUHLQ(Q)d. (19)

Proof: Using (15), there exists C > 0 depending only on vy and 67 such that

H7TDU - WMUH%P Q) — mn,s(us - Un)z
(©)

KEM sEVNVint

< max Z
SEV

< C(hT HVWTUHL?(Q d>

which proves the first part of the inequality. Similarly, using (14) and (15), there
exists C' depending only on v, and 67, such that

lmamw — mrullfay < C D [kl Y (us — ug)? < C (h7)?[Vrrulfagye-
KEM s€Vy

International Journal on Finite Volumes 11
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LEMMA 3.5 There exists C' > 0 depending only on v, 87 and A such that, for all
u € Wp and for all 0,5 € R, s € V,;, kK € M, one has the estimate

1/
DD NOIELIO) S 62) Il (20)
REM SEV, ’fsevﬁ

Proof: Let us define the function 6, = )
has the estimates

scv, Orsns, then from (13) and (15) one

1) OrsFrs(u)] = \/AVwTu Vb, dx|
sEVy ’ ’ )
K 1/2
< Ol Vel (5 2 )
SEVK

from which the Lemma 3.5 is deduced. [J

From the conformity of the VAG discretization and from the compact injection
of H}(Q) in L*(Q), we can state the following compactness property.

LEMMA 3.6 Let D™, m € N be a family of discretizations. Let u(™ ¢ W2 D(m)
m € N be such that HVTrT(m)u(m)HLz(Q)d is uniformly bounded. Then, there exists
u € L2(Q) such that, up to a subsequence,

WT(m)U(m) — u strongly in L%(Q);

moreover u € H(R) and Vrrmu™ — Vu weakly in L2(Q)? along the same
subsequence.

We also state the following approximation property which follows from the clas-
sical conforming finite element approximation theory and from the fact that the
interpolation operator (1)) is exact on affine functions.

LEMMA 3.7 Let ¢ € C%(Q) and let ¥»7 be defined by

S @)

ve MUY

Then, there exists C'(¢)) depending only on 9, Yo and 67, such that
b7 — Yl g @) < CW)hr

3.2 A priori estimates
Let us set VVD A= (WN and for all u = (u)y=1,... N € Wg,m let us define
o aru(x, t) = mpu"(x) for all (z,t) € Q x (1" "],

Tamau(e, t) = mpu"(z) for all (z,t) € Q x ("1, "],
7 Az, t) = mru™(zx) for all (z,t) € Q x ("1, ¢"].
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PROPOSITION 3.8 (A priori estimates) Let S, p € W&At be a solution of the discrete
problem (6) - (10), then it satisfies the estimates

17D, 200 ()L (0,852 () + IVTT, 000 (9)lL2(0 it + IIVET AP lILe 0,0 12 (2)) < C
(21)
for C' depending only on the data and on yrq and 6.

Proof: We first prove the estimate on the discrete pressure. Let S,p € W%, A be a
solution to the system (6) - (10), for each n € {1,..., N} and any v € W) we define

Z Z — vs)A(SK) Flas(P™), (22)

KEM s€V,

B0 = Y moh + k) e
vEMUY;

Remark that that in view of (6), (7) and (10) one has
A (v) = ER(v) for all v € W2. (24)

Setting v = p", we deduce from the definition (11) and from Lemma 3.1 that

1
/ TMAS")A(x)Vrrp" - Vrrp" de = At/ / mpp"( (x) + k™ (x)) daedt.
Q tn

Applying the discrete Poincaré inequality given by Lemma 3.3 and taking into ac-
count the assumptions on the data, one can establish the estimate on the discrete
pressure

V7T aepllLee 0,6 102(0)2) < C.

Before deriving the estimates on the discrete saturation, let us first introduce

some notations. For each n € {1,..., N} and any v € W3 we define
n S;L B 5117/1—1
BD,AL‘(U) = Z Gy Al ~ (25)
veMUV;ne
=D D (k= vs) (SIS Fras(0"), (26)
KEM €V
Z Z — vs) Fles(0(S™)), (27)
KEM sEVy
Fpw)= > mu k" (28)
vEMUY;nt

It follows from (8), (9) and (10) that
Bp at(v) + Ch(v) + Dp(v) = Fp(v) for all v € WQ. (29)

Actually, for a given S"~! the variational problem (24)-(29) is equivalent to (6) -
(10).
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Let us first estimate > ;" AtBR £, (p(S™)) for m € {1,..., N}, we remark that
defining

S
o(9) = / (1) dr for all S € R,
0

one has ) I
—(p(9)2 < d(S) < 2
ST (P(S)? < B(5) < 5
where L, is the Lipschitz constant of the function ¢ (cf. Lemma 11.7 of [5]). We
have that

s?, (30)

O(a) — P(b) = p(a)(a—b) + /ba((p(T) —¢(a)) dr for all a,b € R.

Thus, in view of the monotonicity of ¢, the last term in the above inequality is non
positive so that

D OABEA(P(S™) = Y Y dumy (B(S)) —B(S))
n=1 n=1 veMUVjn;
> S gy, (B(ST) — 0(SY),
veEMUV;nt
which leads, using (30), to

- L
D ALB A(p(S" >>27 Yo oumu(e(S)’ = Y demu(S))
n=1 I/EMUV”“& vEMUV;pnt

and then to

- oL
> AtB s (2(5") 2 5 Impel5™ ey — 5]

n=1

5|2 (31)

in view of assumption Hj.
Next, applying Lemma 3.5 with u = p" and 0} ; = (¢(S%) —¢(S¢)) f(Sis) M(SE)
one can derive that

ZAtCD (M) < ClIVrr.amliz.,) (ZN 2 v >_6x )1/2

n=1  keM HSGVK

Using the boundedness of f and A, (15), and the estimate on the discrete pressure,
we deduce that

ZAtCD ) < CIVrTacp(S)lL2qu e (32)

It follows from Lemma 3.1 that

ZAtDD ) > AIVar ap(8)llEa (g, o (33)
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Applying the Cauchy-Schwarz inequality to > " | AtF3(p(S™)) we obtain

ZAtFD ) < llmp,atk® L2 (@i ) 17D,800(5) L2 @ )-

Thus, from Lemma 3.3, the assumption Hg, and the boundedness of f, we deduce
that there exists some positive C' such that

ZAtFD ) < O Vrr a2y, o (34)

Gathering (31), (32), (33) and (34), and using the Young inequality, the proof is
completed. [

From Proposition 3.8 we deduce the following existence result for the discrete
solution which can be proven by a simple adaptation of Theorem 12.2 of [5] based
on a topological degree argument.

LEMMA 3.9 The discrete problem (6) - (10) has at least one solution.

LEMMA 3.10 (A priori estimates in dual norm) Let S,p € W%At be a solution of
the discrete problem (6) - (10), then there exists C' depending only on vy, 67 and
on the data such that

1 mn n—
EHS —S" 27 <C, (35)
n=1

where the norm | - |1 27 is defined by

|vl-12,7= sup o Z myv,w,  for all v € WP.
weW, w0 HVWTUJHL? ¢ e MUVt

Proof: Let ¢ € Wg, using the notations of Proposition 3.8, we deduce from Lemma
3.5 the following inequality

2

B |<C<Z > o '“' A?(S%(%—%)?) 197702y

KEM SEV,.€

In view of (21), and since f and A are bounded, we obtain
ICp(¥)| < ClIVrTdlrzq)
Thanks to (13) and our assumption on A(x) one has
DB ()| < AMVar L e[ Vare(S™) Lz o)

Next, it follows from the Cauchy-Schwarz inequality , the boundedness of f and
Lemma 3.3 inequality that there exists C' depending only on v, and €7 such that

[FB()| < ClIVrrllpza)
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Thus, in view of (29) and of (5)

¢ > my(Sp— S0y, < CAL (1 + ||V7TTSO(5")||L2(Q)d> V77|20

vEMUVint

and
18" = 5" Y| _127 < CAE (1 + ||V7T7'90(Sn)“L2(Q)d) )

which in turn implies (35) thanks to (21). O

LEMMA 3.11 Let S,p € W%?At be a solution of the discrete problem (6) - (10), then
there exists C' depending only on v, 87 and the data such that

ty=m 2
/ /(WD,AtQO(S)(', 4 T) — TFD’AtQO(S)> dedt <Cr forallT>0. (36)
0 Q

Proof: Let [s] denotes the smallest integer larger or equal to s, we set nat(t) =
[t/At] for all t € [0,2f]. In view of H1, we have that

tffT 9
/ /(WD,AW(S)('; -+ T) - WD,Attp(S)) dadt <
0 Q
na¢(t+7)

cr [0S me(s ) o)) Y (85 s ar
0

VEMUY;nt k=na¢(t)+1
(37)
For all ¢ € [0, 7] we define
_r na(t+T)
Te(1) = v Snadt+9)) (g _ gk=1) qy
5(7—) - Z Z myp{ oy v v
0 k=na¢(t)+1 veEMUVins
such that
tr—r nat(t+7)
Tr) < [T 3 Ve (8O S - S5 rade
0 k=naq(t)+1
_r na(t+T)
< l/tf Z At||V7TTg0(SnAt(t+§))H22 2dt
- 2/ L2(Q)
1o el ko ak—12
7 A SR I R LR
k’:’l’bAt(t)-‘rl

It follows from Lemma 6.1 and 6.2 of [1] that

N N
- T 1 —
Tg(T) < 5 ZAtHVﬂ'T(p(Sk) Hi2(Q)d + 5 Z KtHSk - Sk 1||2—1,2,7"
k=1 k=1

Thus, in view of Proposition 3.8 and Lemma 3.10 we have that T¢(7) < C7 for all
¢ € [0,7], where C depends only on yuq, 07 and on the data. To complete the
proof, it suffices to notice that the right-hand-side of inequality (37) is equal to
T-(1) — To(r). O
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3.3 Convergence proof

This section is devoted to the proof of the following theorem.

THEOREM 3.12 (Main result) Let (D™),,cn be a sequence of discretizations of Q
such that there exist two positive constants 6 and ~y satisfying 07 < 0, v m) < v
for all m € N, and such that hym) — 0 as m — oco. Let At™) be a sequence of real
positive numbers, such that ¢/ AtM) e N for all m € N and such that At(™) — 0 as
m — 00. Let (S (m) p(m))m N be a corresponding sequence of approximate solutions.

Then, there exist S € L>(0,¢7;L?(2)), p € L>(0,¢s; H} () and a subsequence of
(S(m),p(m))meN, which we denote again by (S(m),p(m)) N Such that

me
Tp(m) Ag(m) S(m),wM(m)At<m)5’(m) — S strongly in LQ(Qtf) as m — 0o

and
WT(m>At(m)p(m) — P weakly in LQ(Qtf) as m — oo;

moreover ¢(S) € L2(0,t¢; H}(Q)) and (S, p) verifies the system (2) in the weak sense
(3)-
To begin with, we prove a compactness and the regularity of the limit of the

SEqUENCES T(m) Az(m) P (S(m)) and 7r7—(m)At<m)p(m).

LEMMA 3.13 There exists S € Lz(Qtf) such that ¢(S) € L2(0,ts; H}(Q2)) and up
to a subsequence,

T (m) Ag(m) P (S(m)> — (9) strongly in LQ(Qtf) as m — 400,

and
VT (m) apm) P (S(m)) — V(S) weakly in LQ(Qtf)d as m — 4o00.

Moreover 7rD<m>At(m)S(m) and T (m) A ¢(m) S(m) converge to S strongly in LZ(Qtf) as
m — +oo up to the same subsequence.

Proof: Extending . (m)am) ¥ (S(m)) by zero outside of Q;, we deduce from (21),
(36) and (19) that there exists C' depending only on v, § and on the data such

| 7(m) Aoy @ (S(m)) (3 F+T) = Trem) agm) P (S(m)> r2(mat1y < C(T + hyom)

and therefore using Lemma B.2 of [11] we have that

lim sup {||7T7<m>m<m>90 <S(m)) (o T) = Trim) agom @ (S(m)) ||L2(1Rd+1)} =0.
70 eN

Since, from the a priori estimate (21), the sequence Tr(m) s m) @ (S (m)) is also uni-

formly bounded in L2(R; H} (R9)), we deduce from the Fréchet-Kolmogorov Theorem

that the sequence (7T7—<m) Apm) P (S (m)))m N 18 relatively compact in L?(R%!) (and

also in L?(Qy,)). Therefore, there exists some function ® € L2(Q, ;) such that up to

a subsequence m(my a4 (m) P (S(m)) — @ strongly in L?(R*!) (and also in LQ(Qtf)).
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On the other hand, a simple adaptation of Lemma 3.6 to the time-dependent
setting allows to conclude that

® e L2(0,t; HY(Q))  and  Viyim apom @ (S(m>) — V& weakly in L2(Q,)",

as m — oo up to the same subsequence.

It remains to show that mpm) Azm) S(m) and T Aq(m) Ap(m) S(m) converge strongly to
S := o Y(®). Let us first remark that mpm) Az m) @ (S(m)) and 7y g(m) Ag(m) P (S(m))
converges in L2(Q; ;) to ¢(S) along the same subsequence as T (m)azm) P (S(m))
thanks to (19) and (21). Next, in view of the assumptions #; and #H7 the function
¢! belongs to C(R) and satisfies

o ()| < 1+ LG ul. (38)
Therefore, one can deduce (cf. [1, Lemma 7.1 |) that, up to a subsequence,

7TD<7,L>At(m)S(m), T g (m) Ag(m) sm) g — (pfl(i') strongly in L2(Qtf).

From Lemma 3.6 and Proposition 3.8 we can state the following Lemma.

LEMMA 3.14 There exists p € L°°(0,¢7; Hi(£2)) such that, up to a subsequence,
WT(m)At(m)p(m) — P weakly in LQ(Qtf) as m — —+o00.

Moreover, (VWT(m) Ax(m) p(m))m converges weakly in L?(Q; f)d to Vp along the same
subsequence.

Finally we prove that the function pair (S, p) is a weak solution in the sense of (3).
For this purpose we introduce the function space

U= {p e C>(Qx[0,t7]), ¥ =00nd2x[0,t7], () =0}

For any v € ¥ we define its projection on the discrete space Wg, A DY V) = (2, ty)
for all v € M U V; the corresponding projection of v onto the finite element space
V7 is denoted by 77 ast).
We recall that for all n € {1,..., N} the system (6)-(10) can be written in the
following variational form

Ap(v) = Eb(v) for all v € W2,
Bp ar(v) + Ch(v) + Dp(v) = Fp(v)  forallv e w3,

where Ap(v), B (v), B a(v), Ch(v), Dp(v), F(v) have been defined in respec-
tively equations (22), (2 ) (25), (26), (27), (28). In particular we have that

N

D AtAR"Th) = ZNE%(W_I),

n=1 n=1 N N

D OABE AT+ ) ACHET) + D ADB("TY) = Y AFR($Y).
n=1 n=1 n=1 n=1

(39)
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For each of the term in (39) we will prove a corresponding convergence result.

Accumulation term We consider the term Z 1AtBy, AW Y). Applying the
chain rule and using the fact that ¢(z,T) = 0 we obtain

N
D AtBp A = —Z > / x)7p AtS (2, 1)Itp(z,, t) dadt
n=1

n=1 veMUV;n¢

a Z /¢(m)¢($u,0)50(m) d.

VEMUVpe V¥

The proof of the fact that

ZAtBDAt (Y1) - — //tfqb S(x, )0 (x, t) dadt— /¢ P(x,0)So(x) dx

is classical since in view of Lemma 3.13 the function mp A;S tends to S strongly in

L2(Qi,)-
Diffusion terms It follows from (22) and (13) that
N tf
S oAb = [ [ N aisS(@0) A@)Vrr aimle, ) Vrr arb(e, t-A) dedr
- 0o Jo

Hence,

N B ts -
;AtAD(z/z )—>/0 /QA(S(a;,t))A(m)vp(m,t).w(w,t) dadt

in view of Lemmae 3.13, 3.14 and 3.7. Similarly one can show that

N ”
n n—1 - ) - -
;Atl?p(w )—>/0 /QA(cc)vcp (S(x,1)) - Vi(z,t) dadt

using lemmae 3.13 and 3.7.
Convection term For each cell K € M let (Vj s)sey, be some partition of x such

that |k| = Z/ de and \VHS|—fV dz > 0. For all K € M and s € V,, we set
s€Vx

Tis = !VHS\(W Pl TS Fas(0"), (40)

and we define a piecewise constant function Ty € L2(Q; ;) such that Ty (z,t) = T}
for all x € Vi, 5,t € (tn—1,tn). We also define the function Sy, such that Sy (x,t) =
Sis for x € Vi s and t € (t,-1,t,). Therefore, the convection term can be written

as
N tf
nZ_letC%(w“) — / /Q Ty f(Sy) dadt.
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Let us first remark that f(Sy) — f(S) strongly in L?(Q;,). Indeed, using the same
type of estimates that in the proof of Lemma 3.4 one shows that ¢(Sy) — ¢(S5)
strongly in LQ(Qtf), which yields the convergence of Sy in view of (38). Hence,
f(Sv) — f(S) thanks to the assumption Ho. We will show below that Ty —
A(S)AVD - Vi) weakly in LQ(Qtf). For all £ € ¥ we have

tr
/ /Tvgdszl—l—Tz,
0 Q

ﬁ:ZZ/t / o (€ — E(xp, tn)) daedt

KEM seV, ¥ 'n—1

with

and

Z > Z/ 1/ T7 (@, tn) dadt.

n=1 keEM s€Vy
From (40) and (13) we deduce that

ty
T = / / Emat(@, XN (TS (x, 1) A(x)Vrr ap(x, t)-Vrr acp(z, t—At) dedt,
o Ja

where &aq,a¢ is a cellwise constant function defined by {avar = &(xk, ty) for all

z € kand t € (tp—1,tn). Since Vrr awp(x,t) tends to Vp weakly in LQ(Qtf)d,
Em,at tends to € strongly in L>(Qt,), VT arh(.,. — At) tends to Vb strongly in
L“(Qtf)d, and A (maq,a05) tends to A(S) strongly in L?(Qy,), we deduce that T

ty _
tends to / /{z\(S)AVp - V1 daxdt as hy, At go to zero. On the other hand,

0 Q
setting

1 fn
=1 ¢ dadt — £(ay. 1)
° At|v’i15’ tn—l Vn,s (

we obtain that

zm S S W NS Frs ()R

= KEM sEV

In view of Lemma 3.5 there exists a positive constant C7 independent of h, and At
such that

e < C(ZNZ > Ix| W T PASL (B )2) 19770802 g o

n=1 KEM SEV,.E

Thanks to the regularity of £ and v there exists a positive constant Cy such that
Erg| < Clhw+At) and  |Pp " =27 < Ch,.

which implies limy, - A¢—0 77 = 0 in view of inequality (21) and assumptions Ho and
Hr.
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Source term In view of (11), the assumption Hg and using the regularity of ¢ we
deduce that

B () Z/” /wwﬂp 2, ta1) (K (@) + k(@) dadt
- /0 /Qw(iﬂ,t)(kJr(cc)—i—k(m)) dedt as hy, At — 0.

Similarly, let us set k% A, = f(mpS™)kT + f(7p,atS)k™. Then, one has

tn
Ay h Z/ /TFD Arh (e, ty_1)kp a2, t) daedt

tn—1

— / /wmtko S(x,t)) dedt as hy, At — 0.

4 Numerical examples

We consider an homogeneous isotropic porous media of permeability A = I and
porosity ¢ = 1 on the domain Q = (0,1)%, d = 2,3. The domain is initially saturated
with water Sy = 0 and oil (S = 1) is injected at the left side x = 0 of the domain
with a fixed total velocity Vp = —A(S)AVP -n = 1. On the right side z = 1, the
oil saturation S = 0 and the global pressure P = 1 are imposed. Homogeneous
Neumann boundary conditions are imposed on the remaining sides of the domain,
and there is no source terms.

With such boundary conditions it is well known that the solution S, P of the
two-phase flow model depends only on the x coordinate and on time ¢t. The oil
saturation S(x,t) is the solution of the following one-dimensional Buckley Leverett
degenerate parabolic equation

0tS + 0, f(S) — 0,20(S) =0 on (0,1) x (0,ty),
S =1 on{z=0}x(0,tf),
S=0 on{z=1}x(0,t5),
Sli=o =0 on (0,1),

(41)

and the pressure is obtained from the saturation by the following integral

1 u
Plz,t) =1 +/m A(S‘(ZW. (42)

In our numerical experiment, the relative permeabilities are given by k. ,(S) = S?
and k.., (S) = (1 —.5)? and the capillary pressure by P.(S) = —P.1log(1—S)+ Peg
where the parameter P.; > 0 will basically control the capillary diffusion of the
saturation equation. The viscosity of the oil and water phases are chosen to be
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o = 5 and p,, = 1 which leads to the following total mobility, fractional flow, and
capillary diffusion functions

_572 w2 _i P S 21— u)
)\(5)_5+(1 S),f(S)—%QJF(l_S)Q,sO(S)— 5 /0 L;Jr(l_u)z

Note that ¢(S) can be computed analytically.

The solution of the Buckley Leverett equation (41) and the pressure (42) are
computed numerically on a uniform 1D mesh of size n, = 1000 and with a time
step Nsupar = 20 times smaller than the time step used for the solution on the VAG
discretization on the domain (0,1)%.

Let S. and P, denote the discrete solutions of (41), (42) defined by a continuous
cellwise linear interpolation in space and a constant interpolation in time on each
of the ngyupe:N time sub-intervals. We define the following approximations of the
L2(0,¢7,L2(Q)) norm of the errors for S, P:

N
leSI? =3 AtllrrS™ — Se(t™) 220,
n=1

N
leP|? := " AtflwrP" — Pe(t")f2(q)-

n=1

For VP, we obtain the approximation of the L2(0,¢, (L%(£2))?) error by

N
[eVP|? =Y At|VarP" — VP.(t")|[F 20
n=1
The integrals in space are approximated using second order quadrature formulae in
each triangle (in 2D) or tetrahedra (in 3D).

We also define the convergence rates for each of the above error norms |e||
between two successive meshes m and m + 1 in dimension d:

In(gshy)
#OVr T uvethy
(= m v )

int

Te =

The numerical experiments are done using the FVCA5 benchmark triangular
and Cartesian meshes in 2D and the FVCA6 benchmark tetrahedral, Cartesian, and
prismatic meshes in 3D. We have also added quadrangular and hexahedral meshes
obtained by random perturbation of the Cartesian meshes respectively for d = 2, 3.

Our main objective is to illustrate the convergence of the scheme independently
of the choice of the volume given by the parameters of. We will experiment three
choices of these parameters. The first choice roughly balances the volumes at the
vertices and at cells, the second choice sets very small volumes at the vertices, and
the third choice is a random choice of the volumes at the vertices.
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e Choice 1: ap s =w ﬁ, for w = 0.5 in 2D and w = 0.3 in 3D.
e Choice 2: ap s =w ﬁ, for w = 0.01.

wﬁ if {k| rocktype, =2} = Msq,
e Choice 3: a5 = wﬁ else if rocktype, = 1,
0 else if rocktype, = 2.
with w = 0.5 in 2D and 0.3 in 3D and for a random choice of the rocktype
of the cells. This third choice mimics what is done in [17] to impose a single
rocktype at the vertices for a porous media with two rocktypes.

We also investigate the influence of the capillary diffusion parameter P on the
convergence with three values of this parameter P.; =1 or 0.1 or 0. Note that the
value P, 1 = 0 is not covered by our theoretical analysis.

In all the above numerical experiments, the time step is constant, and the num-
ber of time steps is fixed to 1600 in dimension d = 2 and to 400 in dimension d = 3
in such a way that the time discretization error is kept small with respect to the
space discretization error.

Figures 2 and 3 exhibit the convergence of the saturation on the 2D and 3D
meshes for a small capillary diffusion P.; = 0.1 and the three choices of the vol-
umes. It clearly shows the weak dependence of the solution on the choice of the
parameters of,. In addition the accuracies obtained for the three different choices of
the parameters of are always in the same order: the best accuracy is obtained for
the first choice, followed by the third choice and ending with the second choice. The
same result holds for the global pressure and its gradient as can be checked in the
tables below. It can easily be explained since, roughly speaking, the more balanced
the volume between cells and vertices, the better the accuracy, which corresponds
intuitively to an optimized refinement of the mesh.

Figures 4 and 5 compare the convergence of the saturation and of the global
pressure on the different meshes for fixed choices of the capillary diffusion P.; = 0.1
and of the volumes. It exhibits that the convergence rate as a function of the num-
ber of nodes is roughly the same for the all these quasi uniform meshes as could be
expected. Besides, the constant is quite close for all the 2D and 3D mesh families
considered here.

Figures 6 and 7 compare the convergence of the saturation and of the global
pressure for different choices of the capillary diffusion parameter P.; = 1,0.1,0,
and fixed families of meshes (quadrangular meshes in 2D and hexahedral meshes in
3D) and a fixed choice of the volumes. This time, the convergence rate is clearly
dependent on the capillary diffusion.

For P.1 =0, it is as expected lower than for P.; = 0.1,1 due to the jump of the
saturation at the chock. Although our convergence proof does not cover this case,
the convergence is observed numerically whatever the choices of the volumes as can
be seen in the tables 12 and 18 below.
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For P.; = 0.1 or 1, the convergence rate for the saturation is expected to tend
to 1 for a fine enough space discretization. This is clearly observed in 2D. In 3D
it is not so clear for P.; = 0.1 certainly due to a too coarse space discretization
compared with the 2D case.

5 Conclusion

The convergence of the VAG discretization of the two-phase Darcy flow model to
a weak solution is shown whatever the choice of the volumes at the cell centers
and at the vertices for general polyhedral meshes and permeability tensors. This
is confirmed by the numerical experiments carried out for 2D and 3D families of
meshes. They show that the solution is only slightly dependent on the choice of
these volumes and exhibits a better accuracy when the volumes at the surrounding
cells and vertices are more balanced. This is basically due to the fact that it amounts
to a mesh refinement for the upwind approximation of the fractional flow term. We
also notice in the numerical experiments that these results seem to extend to the
case of no capillary diffusion not covered by our convergence analysis.

From these theoretical and numerical results, we deduce that the practical choice
of the volumes at the cell centers and at the vertices can be done, as proposed in
[17], in order first to respect the main heterogeneities of the porous media and sec-
ond to balance as much as possible the volumes at the neighbouring cells and vertices.

Acknowledgements: We would like to thank the anonymous reviewers for their
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#Vine UVN) | eS| Tes | lleP| | 7ep | [[eVP] | Tevp
20 0.59E-01 0.75E-01 0.34
72 0.38E-01 | 0.69 | 0.44E-01 | 0.83 | 0.23 | 0.62
272 0.25E-01 | 0.64 | 0.24E-01 | 0.88 | 0.15 | 0.61
1056 0.16E-01 | 0.67 | 0.13E-01 | 0.95 | 0.10 | 0.64
4160 0.95E-02 | 0.75 | 0.63E-02 | 1.02 | 0.62E-01 | 0.69
16512 0.51E-02 | 0.91 | 0.29E-02 | 1.12 | 0.36E-0L | 0.80
20 0.72E-01 0.13 0.45
72 0.50E-01 | 0.59 | 0.74E-01 | 0.87 | 0.30 | 0.65
272 0.34E-01 | 0.59 | 0.39E-01 | 0.97 | 0.19 | 0.67
1056 0.21E-01 | 0.66 | 0.19E-01 | 1.08 | 0.12 | 0.69
4160 0.12E-01 | 0.79 | 0.84E-02 | 1.18 | 0.72E-01 | 0.72
16512 0.64E-02 | 0.97 | 0.35E-02 | 1.26 | 0.41E-01 | 0.83
20 0.66E-01 0.96E-01 0.43
72 0.42E-01 | 0.69 | 0.55E-01 | 0.88 | 0.25 | 0.83
272 0.28E-01 | 0.60 | 0.30E-01 | 0.92 | 0.17 | 0.62
1056 0.19E-01 | 0.63 | 0.15E-01 | 0.97 | 0.11 | 0.64
4160 0.11E-01 | 0.77 | 0.72E-02 | 1.10 | 0.67E-0L | 0.70
16512 0.57E-02 | 0.94 | 0.32E-02 | 1.19 | 0.38E-01 | 0.81

Figure 8: Convergence of the L2 error for S, P and VP for the 2D Cartesian meshes
with P.; = 0.1 and the three choices 1,2, 3 in this order of oF.
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#Vine UVN) | eS| Tes | lleP| | 7ep | [[eVP] | Tevp
20 0.56E-01 0.73E-01 0.33
72 0.37E-01 | 0.65 | 0.44E-01 | 0.79 | 0.23 | 0.60
272 0.24E-01 | 0.62 | 0.24E-01 | 0.88 | 0.15 | 0.61
1056 0.16E-01 | 0.62 | 0.13E-01 | 0.92 | 0.10 | 0.59
4160 0.10E-01 | 0.70 | 0.68E-02 | 0.96 | 0.66E-0L | 0.63
16512 0.52E-02 | 0.93 | 0.30E-02 | 1.17 | 0.37E-01 | 0.84
20 0.70E-01 0.13 0.43
72 0.49E-01 | 0.57 | 0.74E-01 | 0.85 | 029 | 0.63
272 0.33E-01 | 0.58 | 0.39E-01 | 0.95 | 0.19 | 0.67
1056 0.21E-01 | 0.64 | 0.19E-01 | 1.08 | 0.12 | 0.66
4160 0.13E-01 | 0.74 | 0.89E-02 | 1.10 | 0.75E-01 | 0.67
16512 0.66E-02 | 0.98 | 0.36E-02 | 1.30 | 0.41E-01 | 0.87
20 0.61E-01 0.92E-01 0.36
72 0.41E-01 | 0.63 | 0.53E-01 | 0.87 | 0.25 | 0.60
272 0.28E-01 | 0.54 | 0.30E-01 | 0.84 | 0.17 | 0.60
1056 0.19E-01 | 0.63 | 0.16E-01 | 0.97 | 0.11 | 0.63
4160 0.11E-01 | 0.72 | 0.77B-02 | 1.03 | 0.70E-01 | 0.64
16512 0.59E-02 | 0.96 | 0.33E-02 | 1.23 | 0.39E-01 | 0.85

Figure 9: Convergence of the L? error for S, P and VP for the 2D quadrangular
meshes with P, 1 = 0.1 and the three choices 1,2, 3 in this order of o} .
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#Vint UVN) | |leS]] | Tes | lleP| | 7ep | [[eVP] | Tevp
32 0.52E-01 0.72E-01 0.32
120 0.35E-01 | 0.59 | 0.40E-01 | 0.89 | 0.20 | 0.68
464 0.24E-01 | 0.59 | 0.21E-01 | 0.96 | 0.13 | 0.64
1824 0.15E-01 | 0.66 | 0.11E-01 | 1.01 | 0.87E-01 | 0.60
7232 0.87E-02 | 0.79 | 0.50E-02 | 1.07 | 0.55E-01 | 0.66
28300 0.44E-02 | 0.99 | 0.23E-02 | 1.16 | 0.30E-01 | 0.87
32 0.62E-01 0.96E-01 0.36
120 0.42E-01 | 0.60 | 0.51E-01 | 0.97 | 022 | 0.70
464 0.27E-01 | 0.62 | 0.25E-01 | 1.05 | 0.14 | 0.67
1824 0.17E-01 | 0.70 | 0.12E-01 | 1.10 | 0.93E-01 | 0.62
7232 0.97E-02 | 0.82 | 0.54E-02 | 1.14 | 0.59E-01 | 0.68
28300 0.48E-02 | 1.02 | 0.23E-02 | 1.20 | 0.32E-01 | 0.88
32 0.56E-01 0.80E-01 0.34
120 0.39E-01 | 0.55 | 0.45E-01 | 0.87 | 0.21 | 0.69
464 0.25E-01 | 0.62 | 0.23E-01 | 1.00 | 0.14 | 0.66
1824 0.16E-01 | 0.67 | 0.11E-01 | 1.06 | 0.90E-01 | 0.61
7232 0.92E-02 | 0.81 | 0.52E-02 | 1.10 | 0.57E-01 | 0.67
28300 0.46E-02 | 1.01 | 0.23E-02 | 1.18 | 0.31E-01 | 0.88

Figure 10: Convergence of the L? error for S, P and VP for the 2D triangular
meshes with P, 1 = 0.1 and the three choices 1,2, 3 in this order of o} .
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#Vine UVN) | eS| Tes | lleP| | 7ep | [[eVP] | Tevp
20 0.39E-01 0.44E-01 0.27
72 0.22E-01 | 0.87 | 0.23E-01 | 1.0I | 0.16 | 0.78
272 0.13E-01 | 0.84 | 0.11E-01 | 1.16 | 0.92E-01 | 0.86
1056 0.76E-02 | 0.76 | 0.54E-02 | 1.02 | 0.54E-01 | 0.79
4160 0.42E-02 | 0.84 | 0.26E-02 | 1.07 | 0.29E-01 | 0.89
16512 0.23E-02 | 0.90 | 0.11E-02 | 1.18 | 0.14E-01 | 1.03
20 0.47E-01 0.77E-01 0.31
72 0.27E-01 | 0.85 | 0.34E-01 | 1.30 | 0.18 | 0.89
272 0.15E-01 | 0.90 | 0.14E-01 | 1.36 | 0.97E-01 | 0.90
1056 0.84E-02 | 0.86 | 0.59E-02 | 1.23 | 0.56E-01 | 0.82
4160 0.45E-02 | 0.91 | 0.28E-02 | 1.12 | 0.30E-01 | 0.90
16512 0.24E-02 | 0.94 | 0.12E02 | 1.21 | 0.15E-01 | 1.04
20 0.42E-01 0.57E-01 0.28
72 0.24E-01 | 0.85 | 0.26E-01 | 1.20 | 0.17 | 0.80
272 0.14E-01 | 0.85 | 0.12E-01 | 1.23 | 0.95E-01 | 0.87
1056 0.79E-02 | 0.82 | 0.56E-02 | 1.07 | 0.55E-01 | 0.82
4160 0.44E-02 | 0.87 | 0.26E-02 | 1.10 | 0.30E-01 | 0.89
16512 0.23E-02 | 0.91 | 0.12E02 | 1.19 | 0.15E-01 | 1.04

Figure 11: Convergence of the L? error for S, P and VP for the 2D quadrangular

meshes with P, 1 = 1 and the three choices 1,2, 3 in this order of a}.
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#Vint UVN) | |leSI| | Tes | lleP| | 7ep | [[eVP] | Tevp
20 0.64E-01 0.85E-01 0.35
72 0.46E-01 | 0.52 | 0.54E-01 | 0.71 0.25 0.56
272 0.34E-01 | 0.44 | 0.33E-01 | 0.72 0.17 0.56
1056 0.26E-01 | 0.40 | 0.20E-01 | 0.79 0.12 0.55
4160 0.20E-01 | 0.43 | 0.11E-01 | 0.78 | 0.81E-01 | 0.54
16512 0.13E-01 | 0.55 | 0.58E-02 | 0.99 | 0.54E-01 | 0.57
20 0.79E-01 0.14 0.48
72 0.59E-01 | 0.45 | 0.91E-01 | 0.71 0.34 0.54
272 0.46E-01 | 0.39 | 0.56E-01 | 0.73 0.24 0.55
1056 0.36E-01 | 0.36 | 0.34E-01 | 0.75 0.16 0.54
4160 0.28E-01 | 0.37 | 0.20E-01 | 0.73 0.11 0.53
16512 0.20E-01 | 0.45 | 0.11E-01 | 0.88 | 0.77E-01 | 0.57
20 0.69E-01 0.11 0.40
P 0.51E-01 | 0.50 | 0.65E-01 | 0.78 | 0.28 | 0.54
272 0.40E-01 | 0.36 | 0.43E-01 | 0.63 | 020 | 0.50
1056 0.31E-01 | 0.37 | 0.26E-01 | 0.74 | 0.14 | 0.56
4160 0.24E-01 | 0.38 | 0.16E-01 | 0.73 | 0.95E-01 | 0.52
16512 0.17E-01 | 0.48 | 0.83E-02 | 0.91 | 0.65E-01 | 0.57

Figure 12: Convergence of the L? error for S, P and VP for the 2D quadrangular
meshes with P.; = 0 (no capillary diffusion) and the three choices 1,2,3 in this

order of af.

F Ve UVN) | eS| 7es | _TePl_| 7ep | [eVP] | 7evr
18 0.11 0.12 0.52
100 0.64E-01 | 0.86 | 0.85E-01 | 0.62 0.39 0.51
648 0.42E-01 | 0.70 | 0.51E-01 | 0.82 0.26 0.65
4624 0.27E-01 | 0.63 | 0.28E-01 | 0.89 0.17 0.66
34848 0.18E-01 | 0.65 | 0.15E-01 | 0.96 0.11 0.66
18 0.12 0.20 0.66
100 0.78E-01 | 0.72 0.13 0.79 0.47 0.61
648 0.52E-01 | 0.64 | 0.75E-01 | 0.89 0.31 0.68
4624 0.35E-01 | 0.61 | 0.40E-01 | 0.96 0.19 0.69
34848 0.22E-01 | 0.66 | 0.20E-01 | 1.05 0.12 0.68
18 0.11 0.15 0.58
100 0.71E-01 | 0.72 0.10 0.69 0.42 0.54
648 0.46E-01 | 0.68 | 0.60E-01 | 0.83 0.28 0.68
4624 0.31E-01 | 0.59 | 0.34E-01 | 0.87 0.18 0.65
34848 0.20E-01 | 0.65 | 0.17E-01 | 0.99 0.11 0.67

Figure 13: Convergence of the L? error for S, P and VP for the 3D Cartesian meshes
with P.; = 0.1 and the three choices 1,2, 3 in this order of oF.
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F Ve UVN) |51 | 7es | _TePll_| 7ep | [eVP] | 7evr
18 0.10 0.12 0.50
100 0.61E-01 | 0.89 | 0.83E-01 | 0.66 0.37 0.54
648 0.40E-01 | 0.69 | 0.51E-01 | 0.78 0.25 0.63
4624 0.26E-01 | 0.61 | 0.28E-01 | 0.89 0.16 0.65
34848 0.18E-01 | 0.56 | 0.15E-01 | 0.92 0.11 0.59
18 0.11 0.20 0.65
100 0.75E-01 | 0.74 0.13 0.81 0.45 0.65
648 0.50E-01 | 0.63 | 0.74E-01 | 0.87 0.30 0.66
4624 0.34E-01 | 0.60 | 0.40E-01 | 0.95 0.19 0.68
34848 0.22E-01 | 0.62 | 0.20E-01 | 1.04 0.12 0.64
18 0.10 0.14 0.54
100 0.65E-01 | 0.82 | 0.94E-01 | 0.66 0.39 0.54
648 0.45E-01 | 0.62 | 0.60E-01 | 0.73 0.27 0.60
4624 0.30E-01 | 0.58 | 0.34E-01 | 0.86 0.18 0.66
34848 0.20E-01 | 0.59 | 0.18E-01 | 0.98 0.12 0.61

#Vint UVN) | |leSI | Tes | lleP|| | 7ep | [eVP]] | Tevp
766 0.47E-01 | 0.63 | 0.48E-01 | 1.08 0.24 0.74
1452 0.42E-01 | 0.56 | 0.40E-01 | 0.93 0.21 0.64
2777 0.37E-01 | 0.63 | 0.32E-01 | 0.94 0.18 0.63
5356 0.32E-01 | 0.62 | 0.26E-01 | 0.97 0.16 0.59

10468 0.28E-01 | 0.61 | 0.21E-01 | 0.98 | 0.14 | 0.56
766 0.49E-01 | 0.65 | 0.51E-01 | 1.12 0.24 0.75
1452 0.43E-01 | 0.58 | 0.41E-01 | 0.97 0.21 0.65
2777 0.38E-01 | 0.64 | 0.33E-01 | 0.96 0.18 0.64
5356 0.33E-01 | 0.63 | 0.27E-01 | 1.00 0.16 0.60

10468 0.20E-01 | 0.62 | 0.21E-01 | 1.00 | 0.14 | 0.56
766 0.48E-01 | 0.64 | 0.49E-01 | 1.11 | 0.24 | 0.74
1452 0.43E-01 | 0.57 | 0.40E-01 | 0.95 0.21 0.65
2777 0.37E-01 | 0.63 | 0.33E-01 | 0.94 0.18 0.63
5356 0.33E-01 | 0.62 | 0.26E-01 | 0.99 0.16 0.59

10468 0.28E-01 | 0.61 | 0.21E-01 | 0.99 0.14 0.56

Figure 14: Convergence of the L? error for S, P and VP for the 3D Hexahedral
meshes with P, ;1 = 0.1 and the three choices 1,2, 3 in this order of o} .

Figure 15: Convergence of the L? error for S, P and VP for the 3D tetrahedral
meshes with P, ; = 0.1 and the three choices 1,2, 3 in this order of o).
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#Vint UVN) | eS| Tes | lePll | 7ep | [eVP]] | Tevr
1210 0.43E-01 0.48E-01 0.25
8820 0.29E-01 | 0.60 | 0.26E-01 | 0.91 0.16 0.66
28830 0.23E-01 | 0.62 | 0.18E-01 | 0.93 | 0.13 0.61
67240 0.19E-01 | 0.66 | 0.14E-01 | 0.94 | 0.11 0.59
1210 0.48E-01 0.57E-01 0.26
8820 0.32E-01 | 0.62 | 0.30E-01 | 0.98 | 0.17 0.68
28830 0.25E-01 | 0.65 | 0.20E-01 | 1.00 | 0.13 0.63
67240 0.20E-01 | 0.68 | 0.15E-01 | 1.00 | 0.11 0.60
1210 0.45E-01 0.52E-01 0.25
8820 0.30E-01 | 0.60 | 0.28E-01 | 0.94 | 0.16 0.67
28830 0.24E-01 | 0.64 | 0.19E-01 | 0.97 | 0.13 0.62
67240 0.20E-01 | 0.67 | 0.15E-01 | 0.97 | 0.11 0.60

F Ve UVN) |15 | 7es | _ePl_| 7ep | [eVPI | 7evr
18 0.82E-01 0.97E-01 0.46
100 0.45E-01 | 1.05 | 0.50E-01 | 1.16 0.30 0.77
648 0.26E-01 | 0.92 | 0.24E-01 | 1.14 0.18 0.85
4624 0.14E-01 | 0.87 | 0.11E-01 | 1.17 | 0.99E-01 | 0.89
34848 0.90E-02 | 0.70 | 0.61E-02 | 0.92 | 0.60E-01 | 0.72
18 0.91E-01 0.15 0.55
100 0.53E-01 | 0.95 | 0.78E-01 | 1.13 0.33 0.87
648 0.30E-01 | 0.92 | 0.34E-01 | 1.30 0.19 0.92
4624 0.16E-01 | 0.93 | 0.14E-01 | 1.32 0.10 0.92
34848 0.96E-02 | 0.80 | 0.68E-02 | 1.11 | 0.62E-01 | 0.77
18 0.85E-01 0.11 0.48
100 0.48E-01 | 1.01 | 0.58E-01 | 1.03 0.31 0.78
648 0.28E-01 | 0.89 | 0.28E-01 | 1.16 0.18 0.84
4624 0.15E-01 | 0.89 | 0.13E-01 | 1.20 0.10 0.90
34848 0.93E-02 | 0.75 | 0.65E-02 | 1.02 | 0.61E-01 | 0.75

Figure 16: Convergence of the L? error for S, P and VP for the 3D prismatic meshes
with P.; = 0.1 and the three choices 1,2, 3 in this order of oF.

Figure 17: Convergence of the L? error for S, P and VP for the 3D Hexahedral
meshes with P, ;1 = 1 and the three choices 1, 2, 3 in this order of af.
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#Vint UVN) | |leS] | Tes | lleP| | 7ep | [eVP]] | Tevp
18 0.11 0.13 0.52
100 0.68E-01 | 0.80 | 0.96E-01 | 0.52 0.40 0.46
648 0.48E-01 | 0.55 | 0.63E-01 | 0.68 0.28 0.56
4624 0.37E-01 | 0.43 | 0.40E-01 | 0.70 0.20 0.56
34848 0.29E-01 | 0.36 | 0.24E-01 | 0.75 0.14 0.54
18 0.12 0.22 0.68
100 0.83E-01 | 0.67 0.14 0.72 0.49 0.57
648 0.60E-01 | 0.50 | 0.92E-01 | 0.72 0.35 0.57
4624 0.46E-01 | 0.41 | 0.57E-01 | 0.73 0.24 0.56
34848 0.36E-01 | 0.36 | 0.35E-01 | 0.75 0.17 0.54
18 0.11 0.15 0.56
100 0.73E-01 | 0.74 0.11 0.55 0.43 0.46
648 0.54E-01 | 0.49 | 0.74E-01 | 0.61 0.31 0.51
4624 0.42E-01 | 0.39 | 0.48E-01 | 0.66 0.22 0.55
34848 0.33E-01 | 0.35 | 0.30E-01 | 0.72 0.15 0.53

Figure 18: Convergence of the L2 error for S, P and VP for the 3D Hexahedral
meshes with P.; = 0 and the three choices 1,2, 3 in this order of of.
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