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Abstract

A model for two phase flow in porous media with distinct permeabilities
leads to a non linear hyperbolic conservation law with a discontinuous
flux function. In this paper for such a problem, the notion of entropy
solution is presented and existence and convergence of a finite volume
scheme are proved. No hypothesis of convexity or genuine non linearity
on the flux function is assumed, which is a new point in comparison
with preceeding works. As the trace of the solution along the line of
discontinuity of the flux function can be considered, this problem is more
complex. To illustrate these results, some numerical tests are presented.
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1 Introduction

The notion of entropy solution, and the convergence of finite volume scheme are
presented for the following hyperbolic conservation law:

{ Opu + Oy (k(m)g(u) + f(u)) =0, (t,z) € Ry xR,

u(0, ) = uo(x),

(1)

with initial value ug € L*°(R;[0,1]). And finally, several numerical results are
introduced.
The functions f, g and k are supposed to satisfy the following hypotheses :

(H1) g € Lip(]0,1]) is non-negative and ¢g(0) = g(1) =0,
(H2) f € Lip([0,1]),
(H3) & is the discontinuous function defined by

Ckp ifz<0 .
k(w)—{kR oo Withhrkr>0and kL # kg



The particular shape of the functions f, g and k£ described through the hypotheses
(H1), (H2), (H3) is given by a model for two-phase flow in porous media with
distinct permeabilities (see [Bac04]). Let us just claim here that, in this context,
the hypotheses on f, g and k are natural.

No hypothesis of convexity or genuine non-linearity on g is assumed, which is a new
point in comparison with all the preceding works on the subject (see by example
[Tow00, Tow01, KT04, SV03, Bac04]). Indeed, these preceding works assume that
the entropy solution must have traces along the line {x = 0}. To guarantee the
existence of these traces, they impose that g is genuinely non linear. Without the
hypothesis on g genuinely non linear, these traces of function can not be considered.
A new difficulty is introduced. Indeed, problem (1) can not be considered as two
conservation laws with Lipschitz continuous flux on each side of the line {x = 0},
because this approach seems to need the trace of the solution (see by example
[KRT03, SV03, Bac04]).

Moreover, in [Tow00] and in [Tow01], it is only proved that a subsequence of the
approximation function, build with the scheme, converges to an entropy solution.
In [KT04], authors prove the convergence of the Lax-Friedrichs scheme without
extraction of a subsequence but they still assume that ¢ is genuinely non linear. In
fact, they need g genuinely non linear to show the uniqueness of entropy solution,
and the uniqueness permits to conclude that the whole sequence converges to the
entropy solution. Recently, in [AV03, AJV04], the authors present some studies for
a generalized problem for the following hyperbolic conservation law:

{ 8tu+ax(g(xau)) =0, (tax) € Ry xR,
u(0,z) = uo(),

(2)

with

_f ogr(uw) if z <0,
9(w;u) = { gr(u) if z >0,

such that g7,(0) = gr(0) = gr(1) = gr(0). Assuming gz, and gr convexs, an explicit
formula of the solution to problem (2) is given.

To begin, the notion of entropy solution to problem (1) is recalled. Generically,
the discontinuity of k£ enforces the instantaneous apparition of discontinuities in the
solution to problem (1) (whatever the regularity of the initial value may be). In
order to ensure uniqueness, weak solutions satisfying entropy inequalities have to be
considered.

DEFINITION 1.1 Let uy € L®(R) with 0 < up < 1 a.e. on R A function u €
L>* (R, xR) is said to be an entropy solution to problem (1) if it satisfies the following



entropy inequalities : for all k € [0, 1], for all non-negative function ¢ € C°(R; x R),
o0
/ / |u(t, z) — k| Opp(t, x) dt dz
0o Jr
o0
+ / / (k(z) ®(u(t,z), k) + ¥(u(t,x),k)) Oxp(t, z) dz dt
0o Jr

" /R juo () — Al (0, 2) dz: + [k, — Erl /Ooogmm(t,omtzo, 3)

where respectively ® and ¥ denote the entropy flux associated with the Kruzhkov
entropy:

D(u,r) = sgn(u—r)(g(u) —gx)),
and  U(u,k) = sgn(u—k)(f(u) —1(k)).

Remark 1 Let u € L°(Ry x R) be an entropy solution. Choosing £ = 1 in inequal-
ity (3) and using g(1) = 0, it is easy to see that v < 1 a.e.. Similarly, choosing x = 0
in inequality (3), we obtain u > 0 a.e.. Then 0 < u < 1 a.e.. This property will also
be satisfied by the approximated solution given by the scheme (see Lemma 2.2).

This paper is divided into two main parts. First, the convergence of the scheme is
established. In section 2, the scheme is presented : this scheme is Euler explicit
in time and finite volume in space. Both discretizations (in time and in space) are
of first order. The aim of subsection 2.3 is to establish a stability property which
is verified by the approximate solution given by the scheme (see Theorem 2.3). In
subsection 2.5, some discrete entropy inequalities which are satisfied by the approx-
imated solution are established. In particular, the monotonicity of the scheme is
introduced in subsection 2.2 is used.

By use of stability property of the scheme, in section 3, the existence of entropy
process solution is established. This notion appears as a generalization of entropy
solution. The convergence of a subsequence to an entropy process solution is proved.
Finally, using the theorem of comparison between two entropy process solutions es-
tablished in [BV05], the equivalence of entropy solution and entropy process solution
and the uniqueness of entropy solution are deduced. Then, the convergence of the
scheme to the unique entropy solution to problem (1) is obtained.

Secondly, some numerical results are presented. On the one hand, the behaviour
of Godunov scheme and VFRoe-ncv scheme is studied with g neither convex nor
concave. The approximated function build with this scheme converges to the entropy
solution. We observe, numerically, a first order convergence.

On the other hand, problem (1), setting f = 0, is equivalent to the 2 x 2 resonant
system :

{ Ot + 0y (k(z)g(u)) =0, (4)

Ok = 0.

This system is resonant for all values where ¢’ is equal to zero. In fact, if the function
g is constant on an interval I included in [0, 1], system (4) is resonant on I. However,



for such a function g, we show that problem (1) is well posed. Godunov, VFRoe-ncv
schemes are presented. The convergence of these schemes is observed although the
VFRoe-ncv scheme is not monotone. Moreover, all these schemes have the same
behaviour.

2 Finite volume scheme

2.1 Presentation of the scheme

DEFINITION 2.1 An admissible mesh 7 of R is given by an increasing sequence of
real values (z;11/2)icz, such that R = {J;cy[%i—1/2, Zij1/2]- The mesh T is the set of
T = {Ki, i € Z} of subsets of R defined by K; = (7;_1/2,%;11/2) for all i € Z. The
length of K; is denoted by h;, and set h = size(T) = sup;cy hi.

Let 7 be an admissible mesh in the sense of Definition 2.1 and let At € R be the
time step. To fix the notation, one assumes that =/, = 0.
In the general case, the finite volume scheme for the discretization of problem (1)
can be written: Vi € Z, Vn € N

hi

E(u?-i_l - u?) + H(U?a u?+17 kia ki+1) - H(u?fla u?a ki*la kl) = 07

1 1
u) = —/ uo(z)de, ki = —/ k(z)dz,

where u is expected to be an approximation of v at time t, = nAt in cell K;.
The quantity H (u,u}, |, ki, ki+1) is the numerical flux at point z;,,/, and time #,
associated to the function k(z)g(u) + f(u).

The formulation (5) is equivalent to:

(5)

KR G(“?—la“?a“?—}-laki*lakiakﬁkl)- (6)

U;

The approximated finite volume solution is defined by

ur ar(z,t) = uy for x € K; and t € [nk, (n + 1)k). (7)

The flux functions satisfy the following hypotheses :
(H4) Flux adapted to the function g: Yu,v € [0,1], H(u,v, k1, k1) = Hr(u,v),

H(u,v,kR,kR) = HR(U,U), H(0,0,kL,kR) = H(l, 1,kL,k‘R) =0 and HL(0,0)
Hp(1,1) = Hg(0,0) = Hg(1,1) = 0.

(H5) Regularity: The function H is locally Lipschitz continuous from R* to R and
admits as Lipschitz constant Ly 4, ; only depending of k, g and f.

(H6) Consistency : Vu € [0, 1], Hr,(u,u) = krg(u)+ f(u) and Hr(u,u) = krg(u)+
f(w).

(H7) Monotonicity: (u,v,k;, ko) + H(u,v,k1,ks), from [0,1]* to R, is nonde-
creasing with respect to u, k1, k2, and nonincreasing with respect to v.



2.2 Monotonicity of the scheme and L* estimate

LEMMA 2.2 Let 7 be an admissible mesh in the sense of Definition 2.1 and let
At € R be the time step. Let ug € L*(R) with 0 <wuy <1 a.e. on R

Let ur ¢ be the finite volume approximated solution defined by (7). Under the
CFL condition

At < inficz h;

8
- 2Lk797f ( )

the function G is nondecreasing with respect to its three first arguments and the
approximation ug a; satisfies

0<ur,p<1 forae zc€Randae teckR,. 9)

For the proof, we assume for simplicity that G is C!. Under the CFL condition, the
partial differentials of G defined by (6) are non negative. Then, the monotonicity of
function G and the following equalities : G(0,0,0,.,.,.) =0 and G(1,1,1,.,.,.) =1
are used.

G is nondecreasing with respect to its three first arguments :

0G At At
oun =1- FH’U,(U?au?-}-lakiaki«Fl) + F(Hv(uy_h@t?aki—laki)
L (2 (2

At
21_2_Lkgf 203
hz VR
under the CFL condition.

oG At
au?—i-l = _h_Z_Hv(ui vui+17kiaki+1) >0,

because H is nonincreasing with respect to its second argument.

0G At
- _Hu > ) na kl* ) kl > 07
3“?,1 hz (uz—l Uu; 1 ) =

because H is nondecreasing with respect to its first argument.

By hypothesis, 0 < u? <1 a.e. on R. For all 7 in Z, using monotonicity argument,
we obtain :

G(0,0,0, ki—lakiaki—l—l) < Uzl = G(“g,“?-h“g—;—hki—lakiaki-i-l)
S G(17 ]-7 ]-7 ki*la kia ki+1)
with G(0,0,0, ki—l,ki,ki-i—l) = 0 and G(l,l,l,ki_l,ki,ki+1) = 1, because g(O) =

g(1) =0 (see (H1)).
Inequality (9) is deduced by induction on n.



2.3 Weak BV estimates

THEOREM 2.3 Let £ € (0,1) and « € (0,1) be given values. Let 7 be an admissible
mesh in the sense of Definition 2.1 such that ah < h; for all @ € Z. Let At € R},
satisfying the CFL condition

At < (1 —&a inficy hi
2L 4.1
Let {u}, i € Z,n € N} be given by the finite volume scheme (5). Let R € R’ and
T € R} and assume h < R and At < T. Let ip,i2 € Z and Ny € N such that:
—R € K;y, R € K;, and T €]NyrAt, (Ny + 1)At]. Then there exists C € R%, only
depending on g, f, R, T, ug, ¢ and «, such that

(10)

Z At Z max IkLg(p) + f(p) — Hr(p, q)|

(p,g)EC(ul u1+1

+ max lkrg(q) + f(q) — Hr(p,q)|
(p)€C(uf ufy )

+ ZAtZ max IkRg(Q)+f(q)—HR(p,q)|

(p,q)EC(ul uy )

+  max IkRg(Q) + f(q) — Hr(p, q)| < (11)

C
(p.a)eC(ul’ uy ) vh'
with for a,b real values, C(a,b) = {(p,q) € [aLb,aTh|; (¢ —p)(b—a) > 0}.
To establish this estimate, some tools introduced in [EGHO00] for conservation laws
are used. But in this preceding work, they strongly use that k is Lipschitz continuous

which is not the case in this work. First we focus our study on the left and on the
right of the line {z = 0} and next around of it.

2.4 Proof of Theorem 2.3

In order to prove (11), equality (5) is multiplied by h;u’ and the result is summed
over ¢ =14g,...,—lorovers=1,...,19, and over n =0,..., Np.

Remark 2 In this part, C; denotes constant only depending on k, g, f, T, R, ug, &,
.

On the one hand, |for i =ig,...,—1, ki1 = k; = ki1 =
B +By=0
where
Nr -1
Bi = > > hitutt —ufyul, (12)
n=01i=tp
Nr -1
By = Y3 At(Hp(ufulyy) — Ho(wf y,uf) uf- (13)
n=01=ig



Each term is studied separately.
1. Study of term B,
A change of index permits to obtain:

N —1

By = Y03 Au(H(uf ulyy) — (kugl) + f(ud

n=01i=ig

= 3 AHL )~ (hugd) + S0

= ZZAt(HL(U?,U?H) (krg(u;') + f(u;

n=01i=ig
Nt -2

i)

)i

)i

- Z Z At(Hp (ug'yuiyr) — (kpg(uir) + fuiyr)))uiiq

n=04i=4p—1
Npr -1

= > ) AHHL(u},ulyy) — (kg(ul) + f (u]

n=01i=ig

)i

—(Hr(ui, uityy) — (krg(uyy) + f(uiy)))uiyy

Nt
- ZAt HL zo 15 zo) (kLg( 7,0)+f( zo))) n;)
n=0
Nt
+ Y At(Hp(uy,ug) — (krg(ug) + f(ug)))ug
n=0
= By +Bj,
with
Npr —1
By =3 " Ar((Hu(u ufy) = (krg(uf) + f(u?))u?
n=0i=ig
—(Hp s ) — (Rpg(udy ) + T ()l ).
and

B} < Ci.

Denoting by @, a primitive of the function (.)krg'(.) + (.)f'(.), an integration

by parts yields, for all a, b real values

b
B(b) — rla) = / (kg (s) + ['(s)) ds

= a(Hg(a,b) — (krg(a) + f(a)))

— b(Hp(ab) — (krg(®) + (1))
b

- (kLg(s) + f(s) — Hy(a,b)) ds.



Then, BJ becomes :

Bl = ZAtZ(I)L ul, 1) — O (ul)

i=ig

+ ZAtZ/ kLg +f(3)—HL(U?aU?+1))d3

Zlo i

= By +B,”

with, immediately |B | < (5. For study term B , one needs the following
result:

LEMMA 2.4 Let f € C(R) and j € C(R?) Lipschitz continuous which satisfies
for all s € R j(s,s) = f(s) and which is nondecreasing with respect to its
first argument and nonincreasing with respect to its second argument. Let j;
and jo be the Lipschitz constants of j with respect to its two variables. Let
(a,b) € R?, then f and j satisfy the following inequality :

b . 1 ) 2
/G(f(S)—J(a,b))ds > m((p,qgré%’b)(f(p)—J(p,q))

. 2
+, max (f(@) —i(p.9) )

The reader can find the proof of this lemma in the Handbook of numerical
analysis [EGHO0O0] (page 915).

Using H,(s,s) = krg(s)+ f(s) with Hy, nondecreasing with respect to its first
argument and nonincreasing with respect to its second argument, and applying
Lemma 2.4 to krg + f and Hy,, B, 2, we get

By > QLk,ngAtZ( max  (kg(p) +/(0) ~ Hi(p,0))’

(p,g)eC(ul u1+1)

+ a. k —+ - H : 2 .
(p,q)elg%u?,uyﬂ)( 19(q) + f(a) = Hr(p,q)) )

Then, this yields

B, ZNZ( max - (keg(p) + /() = Hi(p, )’

2 Ly, fa (p,g)eC(uf u? )
2
+ ma. k + - H :
(p, Q)EC(uXu+1)( 19(q) + f(q) L(p,q)) )
—(C1 + Cy). (14)



2. Study of B;
Using the definition of By (12), one has

Nt -1 -1 -1

Bro= 5 =) = g g Yl

n=01=1%9 1=10 =10
1O 1
> IS S - L e 15)
n=01i=ig i=ig
Using scheme (5), for i € {ip,..., —1}, with the CFL condition (10), this
yields

2
Mt = = S ([ ) — () + )]
H ) — (o) + f))])

(1—&)At
Lk,g,f

([l u ) = (krg(ul)) + F(ul)]?
() = (k) + F(f)]?).

IN

Then

Npr -1

_Zzh n+1 u?2

n=01i=ig

(ZAtZHL (ul, ufyy) — (krg(ui) + f(ul))]

i=io

IN

2Lk,g !

L (6w ) = (kg () + £ ()
+Cs

IN

x(> A Z 0l [krg(p) + f(») = Hi(p, 0))?

p,q)EC(u},ul )

+ a, k + - H , )
i [kigle) +/(0) = Hulp,a) )

+Cs. (16)



Using the preceding inequality, equation (15) gives

5 > 19
2Lk,g,

(ZNZ max  [krg(p) + f(p) — Hi(p, )]’

(p,a)EC(u? uy )

+  max  [krg(q) + f(q) —HL(p’q)]2> — G,
(p)€C(uf uly )

(17)
=
. _ 02
with Cg = C5 + 5 Z(ul) .
1=10
3. Final estimate
Adding (14) and (17) and using B; + B2 = 0, this yields
0 = B1+ By
S £
B 2Lk,g,
X Z At Z max  [krg(p) + f(p) — Hr(p, q))’
p7q EC z 7ul+1)
+ max  [krg(q) + f(q) — Hi(p, @)
(p.9)€C(u} uz+1)
- Oy
Then
Z At Z max  [krg(p) + f(p) — Hi(p,q)]*
i—io (p,g)EC(ul “1+1)
+ max  [krg(q) + f(g) — Hr(p,q))* < Cr.
(P ) EC(uT uly )
(18)
On the second hand, i, ki1 =k =kip = , in the same man-

ner as above

Z Atz max  [krg(p) + f(p) — Hr(p,q)]”

p7q EC z 7ul+1)

+ max  [krg(q) + f(q) — Hr(p,q)]*> < Cs. (19)
(P ) EC(uT uly )

Moreover
Z At max  [krg(p) + f(p) — Hr(p,q)]?

(p,q)eC(uy,ul)

+ max [krg(q) + f(q) — Hr(p,q)]* < Cy, (20)
(p,9)€C(ul ,uf)

10



Nt
because Z At <T.

n=0
Finally, adding (18), (19) and (20), this yields:

Z At Z max  [krg(p) + f(p) — Hi(p, @)

(p,g)EC(ul ul+1)

+ max [krg(q) + f(q) — Hr(p, 9))?
(p,9)€C(u ?7“?—{—1)

+ ZAtZ max [lng(zo)Jrf(p)—HR(p,q)]2

(p,g)EC(ul uJrl

+ max  [krg(q) + f(q) — Hr(p,q)]” < Cia.
(p,a)EC(u} ul, 1)

To obtain estimate (11) and conclude the proof of Theorem 2.3, it is sufficient to
apply the Cauchy-Schwartz inequality to the preceding inequality.

2.5 Discrete entropy inequalities

THEOREM 2.5 Under (H4) to (H7), let 7 be an admissible mesh in the sense of
Definition 2.1 and At € R the time step. Let {u},i € Z,n € N} be given by (5);
then for all k € [0,1], ¢ € Z and n € N, the following inequality holds :

At At
lu — k| < Jul — K| — —(G" -G 1)+ —|AR| (21)
¢ h; =3 h;
with
Giry = HulTr iy Te ki Kiva) — H(u L, uiyy L, ki ki),
and |Ahl| = |H(I<&, Ky ki,ki+1) —H(F&, Ky ki—l,ki)|-

The proof is based on the monotonicity of the scheme and on the following equality:
uTk —ulk = |u— k| with u Tk = maz(u, k) and ulk = min(u, k).

At

h; .

The proof is divided into two steps according to the sign of Ah’.

Leti€Z,neN, ke€[0,1] and A; :=

1. Assume that Ahr? > 0.
On the one hand, by monotonicity, this yields :

ulth = N AR < Wl = Gl gl ul ki, Ky Ky
< Guf Tru TR u TRy ko1, ki ki) (22)
and
K— XN AR < Gl Tryul Tryuls Thykiot, kiykig1), (23)

11



then with (22) and (23)
(u?'Irl — X\ Ahi)T(H — X\ Ahi) < Guf Thyul Thyu T kim1, ki ki),
and
(U,;H_ITFJ) < Guf  Trul Thyul g Ty kit kiskigr) + A AR, (24)
On the other hand,
k> Kk — N\ AR > G(ui Lk uf L, ul Lk kimy, ki ki),

and
ultt > G(ui Lk, uf Lk, ul Lk, kimy, ki ki),
then
ul Lk > G(uly Lk, ul Lk, ul Ly iy, ki Kig1). (25)
Finally, combining (24) and (25) yields :
[t — k| = (WP TR) — (WP Lk)
< G(ui  Th,ul Thyu Tk kim1, ki ki)

— G(up Lk, u Le,ul g L, ki—1, ki, ki)
+ N AR
Gui  Th,ul Thyul  Th ki1, ki ki)
—G(u Lk, u Lk ui L, ki1, ki kiyr)
+ X\ |ARY. (26)

IN

2. If AR! <0, in the same manner
[t — k| = (W TER) — (WP Lk)
< G(ui  Th,ul Thyud Tk kim1, ki ki)

— G(up Lk, u Le,ul g Lk, ki—1, ki, ki)
— NAR

Gui  Th,ul Thyul  Th ki1, ki ki)
—G(up Lk, u Lo, ul g L, ki1, ki, ki)
+ X\ |ARY. (27)

IN

Eventually, this yields for all x € [0, 1]
|u?"’1 -kl < G(ui  Trul Thyul T ki1, ki ki)
—G(uf Lk, u Le,ul Lk kioy, ki, ki)
+ \; |ARY|.
Eventually,
G(ui  Thul Thyuf o TR ki1, ki ki) — Gul Lk, uf Le,uly L, kioy, ki, kigr)
= |u — K| — Ai(GZ_% - G?_%).
Then, for all k € [0,1],i € Zand n € N
[t — k| < |ul — K| — Ai(G?+% -G ) + i |ARY.

1
2

12



3 Entropy process solution

Now the convergence of the scheme to an entropy process solution is presented. This
convergence result is obtained in the sense of “nonlinear weak-* convergence”, de-
fined in [EGHO00], which is a convenient way to understand the convergence towards
a Young’s measure (see [DiP85]):

DEFINITION 3.1 Let 2 be an open subset of RY (N > 1), (up)nen C L®(2) and
u € L*°(Q x (0,1)). The sequence (up)nen converges to u in the nonlinear weak-%
sense if

1
/Qh(un(x))z/)(w) dz —>/0 /Qh(u(x,a))z/)(x)dw do, as n — 400
Vip € LY(Q), Vh € C(R, R). (28)

Equivalentlyy, the sequence (uy,)nen converges to u € L*(2x (0, 1)) in the nonlinear
weak-x sense if, for every h € C(R,R), the nonlinear expression h(u,) converges in
L>®(Q) weak-x to a limit which has the structure fol h(u(-,))da. The fact is, that
any bounded sequence of L*°(€2) has a subsequence converging in the nonlinear
weak-* sense :

THEOREM 3.2 Let 2 be an open subset of RN (N > 1) and (uy,)nen be a bounded
sequence of L>°(€Q). Then (u,)nen admits a subsequence converging in the nonlinear
weak-x sense.

The notion of entropy process solution is adapted to problem (1) as follows :

DEFINITION 3.3 Let up € L*(R) with 0 < up < 1 a.e. in R Let u € L®(RY x
R x (0,1)). The function u is an entropy process solution of problem (1) if for any
k € [0,1] and any ¢ € C°(R;+ x R) non negative,

00 1
/ / / lu(t, z,a) — k| Opp(t, x) dt dz do
0 RJO

00 1
+ /0 /R/O (k(z) @(u(t,z,a), k) + V(u(t,z,a), k) 0pp(t, ) dz dt da
+ /R|U0($) — k| p(0,z)dz + |kr — kg| /000 g(k) o(t,0)dt > 0. (29)

THEOREM 3.4 Let up € L*°(R) with 0 < up < 1 a.e. in R Let £ € (0,1) and
a € (0,1) be given. Let (7,)men be a sequence of an admissible mesh in the sense
of Definition 2.1 such that for all m € N, ¢ € N, asize(Ty,) < hi". Let (Aty,)men be
a sequence of real positive values satisfying the CFL condition (10).

For all m € N, let ut,, A4, be the finite volume approximated solution defined by
(7). Then a subsequence of (u7;, At,, )meN converges towards v € L (R, xRx (0,1))
in the weak-x nonlinear sense, as h,, := size(7,) — 0 and v is an entropy process
solution to problem (1).

13



3.1 Proof of Theorem 3.4

By monotonicity of the scheme and as 0 < wup <1 a.e., |uf, At,| < 1 for all m € N.
Then by convergence in the non linear weak-x sense, there exists a subsequence of
(WT5 At )men and v € L(Ry x R x (0,1)) such that this subsequence converges to
v in the weak-* nonlinear sense.

To establish that v is an entropy process solution, equation (21) is multiplied by

tn-‘,—l
5,

in [EGHO00]) ‘are the study around z = 0 and the study of the last term given by

gntl
» |Ahl|—/ / olt, z) dt da.
1€Z neN Ki
Let ¢ € C°(Ry x RyRy) and m € N. Let 7, = T and At,, = At. As supp(y) is
compact, there exists 7> 0 and R > 0 such that suppy C [0, T] x [-R +h,R —h].
Let ig, %2 and Np be as defined in Theorem 2 3.

/ @(t, z) dt dr and one sums over i and n. The new issues (compared

tn-‘,—l

Let € [0, 1], multiplying equation (21) by — A7 / / o(t, z) dt dz, and summing
tn K;

over © =14g,..., 12 and n =0,..., N, yields :

A+ Ay < As.

Each term is studied separately.
3.1.1 Study of term A,

tn+l

i2
4 = ZZ(W“ = = l) 5 [

zzonO

/go(t,x)dtdw
K;
2 o(t At
=—zzw—ﬁ| / T ALD) =9t D) g g,
i:ion:[]

—Z|u—ﬁ| // (t,z)dt dz

=10

tn-‘,—l

In fact, for this term, the convergence of u7 a; to v for the weak-x non linear
convergence as h tends to zero is used.
On the one hand

At
By, = —Z|u —I<&| / / (t,z)dt dz

=1

1 At
= —E/U /R lur 0 — K|@(t, z) dt dz, (31)

14



with uro =)z u?lKi.
At
However ur converges towards ug in L} (R) and N / o(t, z) dt converges to-
0

wards ¢(0,z) as size(T) tends to zero. This yields
By, — / luo(z) — K|@(0,z) dt dz, as h tends to zero.,
R

On the other hand,

io
ot +At,z) — @(t,z

i—1i9 n=0
t+ At — (t
K;

- _22:2/ At

i—1i9 n=0
A _

_ _// iy (1 7) — | 2EE D) Z@(BD)
o J-r ' At

uT k. converges towards v in the nonlinear weak-x sense as h — 0, then

/ / |uT K (t, ) —/<;|dtd$—>/ / /|vt$oz — k| dtdz.

and by use of the regularity of the function ¢

tn+1

tn+1

(,D(t + Ata :I?) - ‘P(ta :I?)
At

T R 1
By — —/ / / |U(t,:13,0[) - K’|at(10(t7$) dt dz.
h—0 o J-RrJo

One concludes

T 1
lim A, = —/ // |v(t,z, @) — K|Opp(t, ) dt dz do
o JrJo

h—0

— Opo(t, ).
hes0 t90(7$)

then

T
—/ luo(x) — k|@(0, z) dz. (32)

0

3.1.2 Study of term A,
Term A, is defined by:

12
Ay = _ZZ z+1/2 z 1/2/

zzonO

tn+1

/ o(t, z) dtdz
K;

io—1 Nr tntl

:_ZZZzH/Z 11/2/

1=19+1 n=0

/ o(t,z) dt dz, (33)
K;

15



because supp(yp) C [-R + h, R — h].

This term A, is new compared with a conservation law with Lipschitz continuous
flux function. The discontinuity of the function k& introduces new difficulties. Then,
several steps are needed to establish that

lim Ay = // / (0(t, 2, @), &) + T(o(t, z, ), &) peplt, ) da dt dev

h—0

e At first
lim |A2 - A20| =0 (34)
h—0

with Ay defined as follows:

is Nrp g+l

Az = _ZZGZ+1/2/

1=19 n=0

/ Ozp(t, z) dt dz
K;

i2—1 N tntl

- Z Z ivi2 — Gio 1/2)/ o(t, iy1/2) dt.

1=ig+1n=0

The difference between these terms is majored as follows:

| Ag — Agl
ia—1 Nr
S Z Z ‘G?+1/2 - G?fl/Z‘
i=ig+1n=0
tn+1 1
/ (“P(t,xi+1/2) - h_/ o(t,x) dx‘) dt
tn i JK;
io—1 N
< Z Z ‘G?+1/2 B G?—1/2‘
1=t0+1 n=0
thrl
/ h-/ |o(t wig12) — (t, )] dw) dt
tn 1 JK;
io—1 N
< Z Z ‘G?H/z i— 1/2\L1p )Ath
1=ig+1 n=0
-2
= Llp ( Z Z At‘Gerl/2 i— 1/2‘
1=i9+1n=0
i9—1 Np
+ Z Z At ‘G?+1/2 - G?—UQD
2 n=0
1 T
+ Lip(g) Z Z At ‘G?Jrl/Z - G?A/Z‘- (35)
1=—1n=0

16



*FOri:io,---,—Q, ki:ki+1:kL and

G = Gillapol < Hp(ui Tr,uiy  Tr) — (kpg(ui Tr) + f(ui Tk
+ |Hp(u)Lr,ui LK) — (krg(ui Lk) + f(ui Lk
+ |Hp(u] 1 Tr,ulTk) — (kpg(ul Te) + f(ul Tk
+ |Hp(u! qLlk,ul k) — (kpg(ul! L) + f(u! Lk

then

—2 Ny
DD KIGH  — Gyl

t=ip+1n=0
~1 Np
< 23 > k(| Ho(uf uly) — (gn(ul) + f(uf))]
=19 n=0
I Hp (ufl uig) = (kpg(uir) + f(ui))])
~1 Np
< 2ZZk max  [krg(p) + f(p) — Hr(p, q)|
i= Z()’I'L 0 pvq ec l 7ul+1)
+ max  |krg(q) + f(q) — HL(p, q)|)
(p.)EC(u} uf ;)
1
< 20—
- Vvh
using the weak-BV estimate (11).
x For ¢ =2,.-+ )19, kj_1 = k; = kj31 = kg. In the same manner as above
ia—1 Np
DD AUGH Gyl
=2 n=0
i» Nr
< 23N AL Hp(ufulhy) — (krg(uf) + f(ul))]
i=1 n=0
HHr(ui, uiyr) — (krg(uir) + f(ui))])
7,2 NT

< 2) 3 AN max  |krg(p) + f(p) — Hr(p,q)l

isinm0  (POEC(uTul,)

+ a k + — Hz(p,
(paeclu lX,uH_l)| rg(q) + f(q) = Hr(p, q))

1
< 20—
- Vh
* We can notice that
1 Nt Nt
DN ALGE, ), — Gl <CY AL SCT
i——1n=0 n=0

* Finally, with (36), (37) and (38), inequality (35) becomes:
|A2—A20| SC\/E—>0, as h — 0.

17
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e Now, we will prove that
lim |A20 - A20| =0
h—0

with Agy defined as follows:

Agy = —/0 /R(k(x)@(v,/{)+\Il(v,ﬁ))6x<p(t,x) dt dx

sy

N . n
1=19 n=0

tn+1

/K- (k(z)®(v, k) + U(v,K))Opp(t, z) dt dz

To prove this equality one has to take into account the different value of i.
x For i =4g,---,—1,one has k; | = k; = kg,

x For 4 =1,--- ,19, one has k;_1 = k; = kg,

So Ay = A%O + A%O + A%O and Aoy = A%U + A%U + A%U with

-1 Nt g+l
Ay = —ZZG?+% ) / Opip(t, ) dt dx
i=ig n=0 t Ki

-1 NT tn+l

-3

/ (Hp(u} Tk, ul, TK)
i=ign=0"1" Ki

—Hp(u Lk, ul, | LK))Oyo(t, z) dt du,
tn+1

Nt
A%o = —Z/
n=0"1

n

Opip(t, x) dt dx,

i9 Nr 1

A3y, = —ZZGZ% / Oz p(t, z) dt dz
i=1 n=0 ¢ K;
is N g+l

-3

i=1 n=0"1"

/ (HR(U?TH, ui 1 TK)
K;

—Hp(u} Lk, u LK) Opp(t, z) dt dz,

18
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/ (H(uf Tr,ul Tk, kr, kr) — H(u§ L, u} Lk, kL, kr))
Ko



and

-1 NT tn+l

= =S [0 [ [ mo-aow
.

i=ip n=0
f(wTk) — f(vLk)) Opp(t, z) dt dz da,

tn+1

Nt 1
A2 = — X UV, K UV, K X rac
i = go/ /K/O (k(2) D (v, %) + U (v, 5)) Duiplt, 7) di dada,

n

is Np tn+1

A3 > /tn /IQ /OI(QR(UTH) —gr(vLlk)
+

1=1 n=0

f(wTk) — f(vLlk)) Opp(t, ) dt dz dov.
* At first, the difference A}, — A}, is studied :

A — Azl <
-1 Nr g+l

1
Z Z /K /0 ‘(HL(U?T“v u TR) — Hp(uf Li,uly, Lk))

i=ign=0"1t"

—(g(vTK) — gr(vLK) + f(vTK) — f(vJ_ﬁ))‘|3m<,0(t,:1:)| dt dx do
We can notice that
‘ (HL(UZT-LTK,, w1 Tk) — Hp(uf Lk, u' J_K))

(9L 0TR) = kig(vLr) + f(vTr) = f(vLr)) |
< ‘HL(’LL?TK,, ui 1 TK) — (krg + f)(u:l"l—/ﬁ)‘
+ [(gr + ) (Wi Tw) = (krg + f) (v Tr)|
+ ‘HL(’LL?J_K,, ui' 1 Lk) — (krg + f)(“?J—“)‘
+ |(gr + f)(u] L) — (krg + f)(vLk)|.

Moreover, an individually study shows

|Hr(ui Tr,u  TR) — Hp(u] TR, ui Tr)| <
max  |krg(p) + f(p) — Hr(p, 9)|,
(p,a)EC(ul u?y )

and

| H i (L ey L) — Hy (uf Ly L) <

max |krg(p) + f(p) — Hr(p, q)l-
(P @) EC(uT uly )
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Then, equation (40) becomes:

Finally

IN

IN

‘ (HL(U?TI{, ui  TR) — Hy(u Lk, uf'y Lm))

~(9L0Th) — krg(vLn) + f(vTr) = f(vLR)|

< 2 max  |kg(p)+ f(p) — He(p,q)|
(p,9)€C(u} Uiy l+1)
+(max{kz, kr}Lip(g) + Lip(f))|(uf TK) — (vTk)]
+(max{kr, kr}Lip(g) + Lip(f))|(uf LK) — (vLk)]
<2 e kLg(p) + f(p) — Hi(p, q)|
+2 (max{kr, kr}Lip(g) + Lip(f)) ‘u? — v‘.
| Ao — Ag)|
~1 Np
2010:0llo0 Y > Ath;  max krg(e) + 1(p) — Hi (p.q)
=i n=0 (p,9) ECu u
~1 Np
2|00¢plloo Y Y (max{k, kr}Lip(g) + Lip(f))
i=ig n=0
gntl 1
/t /Kl/o uf — v(t,z, )| dt dz do
~1 Np

20|0xpllo0 Y D At max keg(p) + £(p) — Hr(p, )|

S0 (POECuPui,)

2||03¢|| 0o (max{kr,, kg }Lip(g) + Lip(f))

1 Nt tntl 1
/ / ‘uT,k(t,w) — v(t,w,a)‘ dt dx dao.
K; JO

>3

1=19 n=0

As the nonlinear weak-* convergence implies that uy j converges to v in
ZOC(R+ x R x [0,1]), and using estimate (11), we can conclude that

hm |AL, —

Azl =0.

* By the same way, by replacing H; by Hr and kr by kg, we obtain

lim A3
h—>0| 20

—Ag(ﬂ =0
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* It remains to study the limit of A%, and A2,.

Nt
< S|
n=0"1t

tn+1

n

|Oxp(t, )| dt dz

NT tn+1
Clieells > [ [ dtds
n=0 tm Ko

Cl0xpllooTho
Cl|0¢||ccTh — 0, as h — 0,

IN

ININ

and

tn+1

Nt
A2 < ) /
n=0 tn

1
/ / |(k(x)®(v, k) + ¥(v,K)) Opip(t, z)| dt dzda
Ko Jo

tn+1

Nr 1
< Clloze / / / dt dxda
ool [ f

< C|0wp|locTh — 0, as h — 0.

To conclude, equality (39) had been shown.
e With (34) and (39), we obtain

lim 4, = _/0 /R(k(x)@(v,/@) + (v, k) Dot 2) dt da.

3.1.3 Study of term Aj
Term Aj is defined by

ia Nt g+l

. 1
Ay = ZZ|AM|/ —/ o(t, z) dt d.
o hi K,

i=ip n=0
To find its limit, A5 is divided it into three terms according to values of .
1. Fori € {ig,...,—1}, Ah' = H(k,k, kr, k1) — H(k, s, kr, k) =0,
2. Fori € {2,...,is}, AW = H(k,k, kg, kr) — H(k,k,kr,kg) = 0,

/ ‘H(ug—l—/{,urf—l—/{, kr,kgr) — H(ug Lk, u} Lk, kg, kR)‘
Ko

(41)

(42)

3. |AR®| = |H (K, K, kL, kr) — H(k, &, kp, kp)| = |H (K, 5, kp, kr) — krg(s) + f(5)],
and |AhY| = |H (k, K, kg, kr)—H (k, &, k., kr)| = |krg(k)+f(k)—H (K, k, k1, kr)|-

Assuming kr, > kg, (it is similar if k7, < kr), with hypothesis (H4)

AR = (kpg(k) + f(K)) — H(%, k. kL, kR)
and |ARY = H(k,k kp,kg) — (krg(s) + f(k)).
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Moreover

AR /K ot p)dz + AR [ ot z)dz
0

K,
— gl (ke |

T_1/2

0 CE3/2
©(t,0) dr — kR/ o(t, O)dx)
0

0

¢(t,0) dw—/m o(t,0) dac)

—1/2

T3/2

(s k)~ £09) ([

0
— g(k)(kr — kr)e(t,0), as h tends to 0.

Finally

+00
limAs = (ks — kr)g(x) / (1,0 dt
h—0 0

+o0
ks — krlg(s) /0 (1, 0) dt. (43)

3.1.4 Final estimate

Using A1 + Ay < Az and the limits established in previous sections (see equa-
tions (32), (41) and (43)), the function v satisfies the following inequality: for all
k €[0,1], for all p € CP(Ry x R,Ry)

1 o]
/ / / |v(t,z, @) — k| Oyp(t, ) da dt dz
o Jo JRr

1 poo
b [ [0t 00,0 + W0(0,5,0).0) 000 0) dac
+ /R|'U/0(ZU) _H|(,0(0,£E) dx + /OOO |kL —kR|g(/<;)(p(t,0) dt > 0.

So the function v € L*®(R; x R x [0,1]) is a weak entropy process solution to
problem (1).

4 Convergence of the scheme

THEOREM 4.1 Let up € L®(R) with 0 < up < 1 a.e. in R Let u € L®(RT x R)
the unique entropy solution to problem (1). Let £ € (0,1) and « € (0,1) be given.
Let 7 be an admissible mesh in the sense of Definition 2.1 such that ah < h; for all
i € Z. Let At > 0 satisfying the CFL condition (10).

Let u7,a¢ be the finite volume approximated solution defined by (7). Then ur a; —
uin L] (Ry xR) for all 1 <p < oo (and in L*®(R; x R) for the weak-* topology),
as h = size(T) — 0.

To establish this result, a theorem of comparison between two entropy process solu-
tions is used. This comparison is obtained in a previous work [BV05] :
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THEOREM 4.2 (COMPARISON) Under hypotheses (H1), (H2), (H3), let v and v €
L>*(Q x (0,1)) be entropy process solutions of problem (1), associated to the initial
conditions ug € L*(RR; [0, 1]) (resp. vp € L*°(RR;[0,1])). Then, with R,7 > 0

/01 /01 /OT /_I;(u(t,x, A) — v(t, 2, ¢)) T dadtdrd¢ < T/R+CT (uo(z) — vo(z)) dz,

—R-CT
(44)
where C := max{kg, k1, }Lip(g) + Lip(f).

COROLLARY 4.3 If u and v € L (Q x (0,1)) are entropy process solutions of prob-
lem (1), then u(t,z,\) = v(t,z,() for a.e. (t,z,X,() € Q x (0,1) x (0,1). Sou =
is a classical entropy solution.

Proof of Theorem 4.1:

Let (T )men a sequence of admissible mesh and (At )men a sequence of real positive
values such that for all m, At,, satisfies the CFL condition (10). We assume that
size(Tm) = h™ — 0.

Using Theorem 3.4 ans Corollary 4.3, a subsequence of (u7;, At,.)meN converges to-
wards an entropy process solution. Using Theorem 4.2, the entropy process solution
is unique and is the entropy solution to problem (1). Then the subsequence con-
verges towards the unique entropy solution to problem (1). Finally, as the sequence
has a unique value of adherence, the whole sequence (u7,, At,,)meN converges to-
wards the entropy solution to problem (1) for the weak-x non linear topology.
Then

/ / (UTs Aty (8, 2))0(E, ) dz di —>/ / P(t, ) dx dt

vip € LYRT x R), Vh € C(RR). (45)

Setting h(s) = s% in (45) and then h(s) = s and 9u instead of 9 in (45) one obtains:
/ / (ur, At (t, ) — u(t,x))Ql/)(t,w) dxdt — 0, as m — oo,
o JR

for any function v € L'(R,; x R). From equation (45), and thanks to the L™
boundedness of (u7;, At,, Jmen, the sequence (u7;, At)men converges to w in LY (Ry x
R) for all p € [1, 00].

5 Numerical methods

All the methods presented in this section are Finite Volume methods (see [EGH00])
for the hyperbolic equation (1) (with f is equal to zero, to simplify because the
discontinuity of the flux doesn’t concern the flux f), as scheme (5) presented in
section 2.

For the sake of the simplicity, the presentation is restricted to uniform meshes (all
methods may be naturally extended to non-uniform meshes). Let h be the space
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step, with h = ;1 /p—2;_1/2, % € Z, and let At be the time step, with At = gl —gn,

n € N. Besides, let u' denote the approximation of A%v f gijrll//; u(t", z) dz.

Integrating equation (1) over the cell |z;_1 /9, Zi41/2[x[t", "1 yields:

At
1
up =i — T (‘:0?+1/2 - 90?—1/2)

where ¢, | 5 is the numerical flux through the interface {zig10} x [t", " We
recall that the function % is approximated by a piecewise constant function. The
numerical flux 90?+1/2 depends on k;, ki1, uf, uil, .

Moreover, the CFL condition imposed in Theorem of convergence 3.4 is satisfied.

Notice that all the methods presented here rely on conservative schemes, since the
problem is conservative. Finally, all the presented schemes are three-points schemes.

5.1 The Godunov scheme

The Godunov scheme [God59] is based on the resolution of the Riemann problem
at each interface of the mesh. In fact we remark that problem (1), assuming f = 0,
can be considered as the following resonant problem:

O+ 0, (k(x)g(w)) =0, 9, =0. (46)

The Godunov Method applied to this resonant system had been studied by Lin,
Temple and Wang ([LTW95a], [LTW95b]). A specific Godunov scheme associated
to problem (1) had been studied by Towers using a discretization of k staggered with
respect to u ([Tow00], [Tow01] ). Here, we consider the Godunov Method applied
to the following 2 X 2 system:

Oru+ 0y (k(z)g(u)) =0,
Ok =0, t>t" x eR,

o= { Bz -] s

i+1 i+1/2 i+l T > T2
Let u?+1/2((513 = Tip1y2)/(t —1"); ki, kHl,u?,u?H) be the exact solution to the Rie-
mann problem (see section 8 for an explicit presentation of the solution). Since
the function k is discontinuous through the interface {z; 1/} x [t",¢"1[, the so-
lution u’ /2 is discontinuous through this interface too. However, the problem is

conservative, so the flux function is continuous through this interface, and writes:

e = kig(uyy (075 ki kivr, v uiy )
= kiv1g(uy o (075 ki kipr, uf uflyy)- (47)

Remark 3 To evaluate the numerical flux ¢}’ /) We don’t have to calculate the
?+1/2 but only this value at z = 0~ or at z = 07. As we remark in

the section 8, it is simpler.

exact solution

Remark 4 In the examples presented in section 6 and 7, we can show that the
Godunov scheme is monotone.
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5.2 The VFRoe-ncv scheme

If we don’t want to solve the Riemann problem at each step of the scheme, an
alternative scheme is presented. This scheme is an approximate Godunov scheme,
based on the exact solution to a linearized Riemann problem. A VFRoe-ncv scheme
is defined by a change of variables (see [BGH00] and [GHS02]). The new variable is
denoted by 6(k,u). For problem (1), we take 08(k,u) = kg(u) for the new variable.
If v is defined by v(t,z) = 0(k(z),u(t,z)), the VFRoe-ncv scheme is based on the
exact resolution of the following linearized Riemann problem:

o + (l%g’(ﬂ))amv =0, t>t", reR,

0(ki, ujt) if 2 <ip1)0 (48)

v(0,z) = { Okis1,uly,) x> mipy)

where & = (k; + ki11)/2 and @ = (u + uf 1)/2. As the Godunov scheme, the flux
(which is represented by v) is continuous through the interface {241/} x [t" x "]
(this property is obtained by the good choice of ). If U?H/Q((:I: = Tip12)/(t —
t"); kiy ki1, wl, “?—H) is the exact solution to Riemann problem (48), as the function
k is positive, the numerical flux of the VFRoe-ncv scheme is:

‘P?+1/2 = “zn+1/2(0§kiaki+1aU?aU?+1)
_ { 0(ki, ull) if g'(a) >0 (49)
O(kiv1,uiyy) if g'(a) <0,

We can remark that the VFRoe-ncv scheme is reduced to the well-known upwind
scheme for problem (48).

Finally, as function ¢ is not genuinely nonlinear, the function ¢’ can be equal to zero
on an interval included in [0, 1]. Then, if ¢'(4) = 0, problem (48) is not ill-posed, we
take for the numerical flux

Pivre = (Rig(ui’) + kip1g(uii1))/2. (50)

5.3 The God/VFRoe-ncv scheme

We will remark in section 8, that the resolution of the Riemann problem at the
interface {2} x [t",¢"*![ where k is discontinuous, is long and difficult, then we
introduce the God/VFRoe scheme.
For 7 < 0 and 4 > 0, the numerical flux is the Godunov flux (defined in subsection 5.1
with (47)):
v = kig(uiy (075 ki kivr, ug' uig)
= Ifi+1g(U?+1/2(0+§ki,ki+1,U?,U?+1), (51)
and for 7 = 0, the numerical flux is the VFRoe-ncv flux (defined in subsection 5.2
with (49) and (50)):
‘P?+1/2 = ”zn+1/2(03 kis kivi,ui,uiy)  if g'(a) # 0,
Oy = (kig(ui) + kivag(uiyy))/2  if g'(a) =0. (52)
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6 Numerical results for nor convex neither concave flux
function

In this section, numerical results with g nor concave neither convex are presented.
The graph of g is the following :

35 8
3
«—kg
25 6 L
5 2
2 4
15
1 2
0.5
0 0
0 02 04 06 08 1 0 02 04 06 08 1
u u

Figure 1: Graph of g and krg, krg

For numerical tests, ¢ is given by g(u) = —23.57u* + 48.33u? — 32.45u? + 7.69z.

In the two following tests, the Riemann problem is numerically solved. The length
of the domain is 10m. The mesh is composed of 100 cells and the CFL condition is
set to 0.05. The variable u is plotted, in order to appreciate the behaviour of the
Godunov scheme through the interface {z/t = 0}.

The initial conditions of the first Riemann problem are k;, = 1.5, kg = 1, uy, = 0.53
and up = 0.4. The results of Fig. 2 are plotted at t = 4s. The analytic solution to
this Riemann problem is given in section 8. The numerical approximations provided
by the three schemes are similar. We can observe that the three schemes present
only one point in the shock between uy, and u(t = 4s,07), moreover this point is in
the interval given by [ur,u(t = 4s,07)].

The initial conditions of the second Riemann problem are kr, = 1.5, kr = 1, uy, =
0.53 and ur = 0.9. The results of Fig. 3 are plotted at ¢ = 1s. The analytic
solution to this Riemann problem is given in section 8. The numerical approximation
provided by the three schemes are similar and we observe the same behaviour than
for the first Riemann problem presented.

7 Numerical results for a piecewise linear flux function

In this section, the function g is defined as follows:

4u it 0 < u < 1/4,
g(u) = 1 if 1/4 < u < 3/4, (53)
du+d if 3/4 < uw < 1,

We have already remark that problem (1) can be considered as the following resonant
system:

Ou + 0y (k(z)g(u)) =0, 0Ok =0. (54)
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Figure 3: kz, = 1.5, kg = 1, uz, = 0.53, ug = 0.9, 100 cells.

We notice that the system is resonant for u € [1/4,3/4]. We will show that the
numerical methods are stable in spite of the resonance of the problem.
In the following test, the Riemann problem is numericaly solved. The length of
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the domain is 10m. The mesh is composed of 100 cells and the CFL condition is
set to 0.12. The solutionu is presented in order to appreciate the behaviour of the
Godunov and the VFRoe-ncv scheme through the interface z/¢t = 0.

The initial conditions of the two Riemann problems are k;, = 1.5, kg = 1, uy, = 3/8
and up = 5/8. We remark that ur, ug € [1/4,3/4]. The results of Fig. 4 are plotted
at t = 2s. The analytic solution to this Riemann problem is given in section 8. The
numerical approximations provided by the Godunov scheme and the VFRoe scheme
are similar. We may notice that the VFRoe-scheme introduce an error in the shock
between uy, and u(t = 2,2 = 07). This error is due to the fact that ¢'(ur) = 0 and
g (u(t =2,2 =07)) # 0 and isn’t due to the discontinuity of function k. Moreover,
the behaviour of the scheme God/VFRoe, described in section 5.3, is similar that
the behaviour of the Godunov scheme. This error is corrected. Then, even if g is
constant on an interval included in [0, 1], the behaviour of the schemes are similar
(see seconf picture in Figure 4).

1 1
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0.6 o) 0.6
=] S O
04 gy 0 o
| O VFroe-ncv O God/VFRoe | |
0.2 * God 02 * God
Ex. Sol Ex. Sol
0 0
-5 0 5 -5 0 5
X X

Figure 4: kr, = 1.5, kg = 1, ur, = 3/8, up = 5/8, 50 cells

We study now the ability of the schemes to converge towards the entropy solution.
On the one hand, with Theorem 3.4 and as the Godunov scheme is monotone and
satisfies hypothesis (H7), we know that the approximated solution given by this
scheme converges to the entropy solution. But we don’t know the order of this
scheme. On the other hand, we don’t know if the two others schemes are monotone,
then Theorem 3.4 can’t be use.

The computation of this test are based on the Riemann problem exposed just above.
Some measurements of the numerical error provide that the methods tends to zero as
Az tends to zero. The L! discrete norm defined as follows: Az Y, n |[ul' —u®(x;)|
is used. But, numerical tests provided by all schemes presented are same behaviour.
Several meshes are considering: involving 50, 100, 500, 1000. The axes of Fig. 5 have
a logarithmic-scale. We observe a first order convergence for all schemes presented.

Remark 5 We can observe the same results for g presented in section 6.
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8 The Riemann problem

In this section, the exact solution to the Riemann problem is presented :
u + 05 (k(z)g(u)) =0, r€eER teR,

_ _Jour ifx <0 |k ifz<O
“(t_o’i)_{uR if 2 < 0 ’k(”:)_{kR ifz <0’

where k7, kg € R} and ur, ug € [0,1]. We note that in [Die95], a general approach
to find the solution of Riemann problem is given for fluxes with need not be convex
or conave. Solution to the Riemann problem given in section 8.2 agrees with the
solution given in [Die95].

8.1 Local entropy condition of the entropy solution

In order to know if a function u is the unique entropy solution of Riemann prob-
lem (55), we have to verify that the function u satisfies entropy inequalities (3).
These conditions are difficult to satisfy. We can establish equivalent local condi-
tions. In the following, we assume that if u € L (R} x R) is an entropy solution,
then v admits some traces along the line {x = 0} (see [SV03, Bac04]). Let us define
u” = u(t,z = 07) and u™ = u(t,z = 07). We can remark that v~ and u™ are
constant. Moreover, in the proof of uniqueness (see [SV03, Bac04]) some properties
satisfied by the function u are established :

1. Vk €10,1], I,(x) > 0 with

Iu(K’) = kL(I)(uia ﬁ) - kR(I)(u+7 H) + |kL - kR|g(ﬁ)a

2. The Rankine-Hugoniot relation

krg(u™) = krg(u®). (55)
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If a function v € L*®(Ry x R; [0, 1]) satisfies these two conditions and if u is a weak
solution to problem (1) (with f equal to zero):

/ / u(t, 1)t 7) + k(2)g(ult, 1))t 2) dt dz + / o ()0, 7) dz = 0,
R. JR R

then the function w is the unique entropy solution to this problem. Now, we use
these two conditions to solve the Riemann problem (55). To describe the solution,
we assume for instance k;, > kg.

Let up, up € [0,1]. Let u € L®(Ry x R;[0,1]) be the entropy solution to the
Riemann problem (55). Then u satisfies:

Fort >0, z < 0:
- u is the unique entropy solution to:

8tu—)—8$(kLg(u)):0 teR,, z eR",
u(t=0,z) = ur, z e R (56)
u(t,t =0") =u" teRy

- If u contains a rarefaction wave, ¢'(u(t,z)) must be negative for t € Ry, z € R* .
- If u contains a shock wave, the speed of the shock must be negative.

For ¢t >0, z > O:
- u is the unique entropy solution to:

Ou+ 0y (krg(u)) =0 teR,, ze RS,
u(t =0,2) = ugr r € R} (57)
u(t,z =0%) =ut teRy

- If u contains a rarefaction wave, g'(u(t,z)) must be positive for t € Ry, z € R..
- If w contains a shock wave, the speed of the shock must be positive.

Fort >0, z = 0:
- krg(u™) = krg(u®),
-ifu~ <wu™, we only need to verify: Vi € [u—,u™]

L(k) = —kpg(u™)+krg(k) — krg(u®) + krg(r) + krg(k) — krg(k)
= 2kr(g9(k) —g(u™)) >0,

using the Rankine-Hugoniot relation (55).
-if u~ > u™, we only need to verify: Vk € [ut,u”]

I(k) = kpg(u™) —krg(k) +krg(u®) — krg(k) + krg(x) — krg(k)
= 2kp(g(u®) —g(r)) >0,

using the Rankine-Hugoniot relation (55).
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8.2 Solution to the Riemann problem with ¢ nor concave neither
convex

In this section, the entropy solution to Riemann problem (55) is described, with ¢
nor concave neither convex. The function g admits two local maximums in « and
in v and one local minimum in § with a < 8 < 7 such that g(a) > g(v) > g(8). A
graph of g is represented in Fig. 8.2.

When the function & is equal to kg, the construction of the solution to the Riemann
problem is necessary. Let u; and u, two different states in [0,1]. We link u; and u,
by a shock wave and/or a rarefaction wave. We don’t describe all possible situation,
but we refer to [Ser96] for more details.

Then, the construction of the solution to Riemann problem (55) is reduced to the
determination of v~ and u*. We only focus on the case krg(8) > kgrg(c) (for
others case, the solution may be constructed by the same way). In fact, with this
assumption, the couple of root of kpg(u~) = krg(u™) are reduced to two possibilities
in several cases:

o ifur <a:

— ifup < aand krg(ur) < krg(a):

¥ U4 =ur,

* uT is the smallest root of krg(ut) = krg(ur) and u™ and ug are
linked by a shock wave if krg(ur) > krg(ur) or by a rarefaction
wave if krg(ur) < krg(ug).

— ifur < aand krg(ur) > krg(a):

x u~ is the greatest root of kpg(u™) = krg(a) and ur and u™ are
linked by a shock wave,

* ut =« and uT and up are linked by a rarefaction wave.

—ifa<ur < and krg(ur) < krg(ur):

¥ U4 =ur,
x uT is the smallest root of krg(u™) = krg(ur) and vt and ug are
linked by a shock wave.

— ifa <ugr < B, krg(ur) > krg(ur) and g(ur) < g(v)
and krg(ur) > krg(y):

* 4~ is the greatest root of kr,g(u™) = krg(y) and v~ and uf, are linked
by a shock wave,

¥+ uT = and u' and up are linked by a shock wave.

— ifa <ugr < B, krg(ur) > krg(ur) and g(ugr) < g(v)
and krg(ur) < krg(y):

¥ U4 =ur,

* uT is the root of krg(ur) = krg(u™) included in [a, 8] and u™ and
upr are linked by a shock wave.

— if a <ugr < B, krg(ur) > krg(ug) and g(ur) > g(7v):
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* u~ is the greatest root of krg(u~) = krg(ur) and v~ and uz, are
linked by a shock wave,

* U+ = UR-
if 6 <ur <«vand krg(ur) < krg(B):
* U =ur,

* uT is the smallest root of krg(ut) = krg(ur) and u™ and ug are
linked by a shock wave, then a rarefaction wave.

if 6 <upr <~vand krg(ur) = krg(B):

¥ U4 =ur,

* ut = B and u* and up are linked by a rarefaction wave.
if 8 <up <~and krg(ur) > krg(B) and krg(ur) < krg(ug):

* U =ur,

* uT is the root of krg(ur) = krg(u™) in the interval [a, 5], and u™
and up are linked by a shock wave.

if 6 <ur <~vand krg(ur) > krg(B) and krg(ur) = krg(ugr):

¥ U4 =ur,

* U+ = UR-

if 6 <up <~vand krg(ur) > krg(B) and krg(ur) > krg(ug)
and krg(ur) < krg(y):

* U = Uy
* uT is the root of kpg(ur) = krg(u™) in [3,7], and u, and ug are
linked by a rarefaction wave.
if 8 <up <~and krg(ur) > krg(B) and krg(ur) > krg(ug)
and krg(ur) > krg(y):

* v~ is the greatest root of kpg(u~) = krg(y), and uy, et u~ are linked
by a shock wave.

* uT =, and u, and upr are linked by a rarefaction wave.

ur > v and krg(ur) < krg(B) and krg(ur) < g(ug):

¥ U4 =ur,
* uT is the smallest root of kpg(ur) = krg(u™) and vt and ug are
linked by a shock.
ug > and krg(ur) < krg(B) and krg(ur) > g(ug):
* u~ is the greatest root of krg(u™) = krg(ur), and u~ and uj, are
linked by a shock.
* U+ = UR-

ur > v and kpg(ur) > krg(B) and krg(ur) < krg(ug):

* U =ur,
* u™T is the root of krg(ur) = krg(u™) included in [3,7], and u™ and
upr are linked by a shock wave.
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— up > and krg(ur) > krg(B) and krg(ur) > krg(ugr):

* u~ is the greatest root of krg(ur) = krg(u~) and uy and u~ are
linked by a shock wave,

* ut = ug.
o ifa<ur <v¥y:

—ifup < a:

* u~ is the greatest root of krg(u~) = krg(a), and uy, and u~ are
linked by a rarefaction wave and then a shock wave,

* ut = o and uT and up are linked by a rarefaction wave.

— ifa<ur < and krg(ur) > krg(y):

* u~ is the greatest root of krg(u~) = krg(ur), and ur, and v~ are
linked by a rarefaction wave and then a shock wave,

* ut = ug.

— ifa<ur < and krg(ur) < krg(y):

* u~ is the greatest root of krg(u~) = kgrg(y), and uy and u~ are
linked by a rarefaction wave and then a shock wave,

* uT =+, and u* and upg are linked by a shock wave.
—iff<ur <y:
* u~ is the greatest root of krg(u™) = kgrg(7y), and uy and u™ are
linked by a rarefaction wave and then a shock wave,

* uT =+, and u* and upg are linked by a shock wave.
— ify <ug:
* u~ is the greatest root of krg(u~) = kgrg(y), and uy and u~ are
linked by a shock wave,

* U+ZUR.
o if y <up:

—ifup <a:

* u~ is the greatest root of krg(u™) = krg(a), and uy and u~ are
linked by a shock wave if krg(ur) < krg(ur) or by a rarefaction
wave if krg(ur) > krg(ur),

* ut = o and uT and up are linked by a rarefaction wave.

— ifa<ugr < and krg(ur) > krg(y):

* u~ is the greatest root of krg(u~) = krg(ur), and ur, and v~ are
linked by a shock wave if krg(ur) < krg(ur) or by a rarefaction
wave if krg(ur) > krg(ug),

* U+ = UR-

— ifa<ur < and krg(ur) < krg(y):
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* u~ is the greatest root of krg(u™) = kgrg(7y), and uy and u™ are
linked by a shock wave if kr,g(ur) < krg(7y) or by a rarefaction wave
if kpg(ur) > krg(7),

* ut =+, and v and up are linked by a shock wave.

—iff<ur <y:
* u~ is the greatest root of krg(u™) = kgrg(7y), and uy and u™ are
linked by a shock wave if kr,g(ur) < krg(7y) or by a rarefaction wave

if kpg(ur) > krg(7),
* ut =, and " and up are linked by a shock wave.
— ifup >y
* u~ is the greatest root of krg(u~) = krg(ur), and ur, and v~ are
linked by a shock wave if krg(ur) < krg(ur) or by a rarefaction
wave if krg(ur) > krg(ug),
* ut = upg.

8.3 Explicit form of the solution to the Riemann problem with ¢
piecewise linear

In this section, we describe the entropy solution of Riemann problem (55), with g
defined as in section 7 (see Eq. (53)).

We first present the construction when the function k is constant equal to kg. Let
u; and u, be two different states in [0, 1]. We link u; and u, by a shock wave in all
case because g is piecewise linear:

Uy — Uyp

u(t,x) = (58)

up i x/t > kg—g(ul) —9(ur)
U — Uy

The construction of the solution to the Riemann problem is reduced to the determi-
nation of u~ and u™. We only focus on the case ki, > kg (if k < kg, the solution
may be constructed by the same way).

o ifur, <1/4

— ifur <1/4 and krg(ur) < krg(1/4):

* uT =g,
* uT is the smallest root of kpg(ur) = krg(u™), and u™ and ug are
linked by a shock wave (defined by (58) with u; = v, u, = ug and
ko = k).
— ifur < 1/4 and krg(ur) > krg(1/4):

* u~ is the greatest root of krg(u™) = krg(3/4) and v~ and uy, are
linked by a shock wave (defined by (58) with u; = ur, v~ = u, and
ko = kz),
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* ut =1/4 and u™ and up are linked by a shock wave (defined by (58)

with u; = u™,
— ifup =1/4 and krg(ur) > krg(1/4):

* u~ is the greatest root of krg(u~) =
linked by a shock wave (defined by (5
ko = k1),

* U+ = UR-

— 1/4 <up <3/4 and krg(ur) < krg(1/4):

¥ U4 =ur,
* uT is the smallest root of krg(ur) =

linked by a shock wave (defined by (5

ko = k).

— 1/4 <up <3/4 and krg(ur) = krg(1/4):
¥ U4 =ur,
* U+ = UR-

— 1/4 <up <3/4 and krg(ur) > krg(1/4):

* u~ is the greatest root of krg(u~) =
linked by a shock wave (defined by (5
ko = k1),

* U+ = UR -

— ugp > 3/4 and krg(ur) < krg(ug):

¥ U4 =ur,

x uT is the smallest root of krg(ur) =
linked by a shock wave (defined by (5
ko = kg).

— ugr > 3/4 and krg(ur) = krg(ur):
¥ U4 =ur,

x ut =up.

— ugp > 3/4 and krg(ur) > krg(ur):

x u~ is the greatest root of krg(u™) =
linked by a shock wave (defined by (5
ko = kz),

* ut = ug.

o 1/4<wup <3/4

— up < 1/4:

* u~ is the greatest root of krg(u~) =
linked by a shock wave (defined by (5
ko = k1),

ur = ug and kg = kg).

krg(3/4) and v~ and uz are
8) with u; = ur, v~ = u, and

krg(u™) and u™ and ug are
8) with u; = u™, u, = ug and

krg(3/4) and v~ and ug are
8) with u; = ur, v~ = u, and

krg(u™) and u™ and ug are
8) with u; = u™, u, = ur and

krg(ur) and u~ and uy, are
8) with u; = ur, u~ = u, and

krg(1/4) and v~ and ug are
8) with u; = ur, v~ = u, and

* uT =1/4 and u* and ug are linked by shock wave.
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— 1/4 < up:

x u~ is the greatest root of krg(u™) = krg(ur) and u~

linked by a shock wave (defined by (58) with u; = ur, u
ko = k1),

* U+ = UR-
o uz > 3/4:

— ugr < 1/4 and krg(ur) > krg(ur):

and uy, are
~ = wu, and

x u~ is the greatest root of krg(u~) = krg(1/4) and v~ and uy, are

linked by a shock wave (defined by (58) with u; = ur, u
ko = k1),
x* uT =1/4, and u™ and ug are linked by a shock wave.

up < 1/4 and krg(ur) < krg(ur):

* u~ is the smallest root of krg(u~) = krg(ugr) and u~

linked by a shock wave (defined by (58) with u; = ur, u
ko = kz),
* ut =1/4, ut and ug are linked by a shock wave.

up < 1/4 and krg(ur) < krg(ur):

* u~ is the smallest root of krg(u™) = krg(ur) and u~

linked by a shock wave (defined by (58) with u; = ur, u

ko = k1),
* U+ = UR-
— 1/4 < up:

x u~ is the greatest root of krg(u™) = krg(ur) and u~

linked by a shock wave (defined by (58) with u; = ur, u
ko = k1),

* U+ = UR-

~ =u, and

and uj, are
~ =u, and

and uj, are

~ = wu, and

and uy, are

~ = wu, and

I would like to thank Thierry Gallouét, Nicolas Seguin and Julien Vovelle for theirs
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