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Abstract

In the present work, we consider the numerical approximations of

multi-fluid compressible fluctuating flows. Assuming that the flow is

composed by non mixing compressible fluids, we derived a modelization

that can be view as an extension of the standard compressible (k, ǫ).

This model is fundamentally in non conservation form (the coupling

between fluids and turbulence involves non conservative products) and

the usual finite volume methods fail. The nonlinear projection scheme is

used to preserve, at the discrete level, the main properties of the model.

The numerical computations are performed on the Richtmeyer-Meshkov

instability to validate the approach and to measure the influence of

fluctuations.

Key words : compressible flows, velocity fluctuations, non-conservative

equations, nonlinear projection methods

1 Introduction

When modeling non mixing multi-fluid flow, one generally assume that, at a given
point of the domain, only one component is present. Therefore, averaged variables
are always associated to an unique component of the fluid. This ideal situation
is well posed when the different interfaces are explicitly characterized and tracked.
Based on this observation, some numerical methods have been developed [7, 9, 10,
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12, 13, 14, 21, 26]. The main difficulties in these approach are the computations
of interfaces/interfaces and interfaces/waves interactions. The problem becomes
crucial when there are many complex interfaces.

The numerical approach proposed in this paper does not explicitly characterize
or track the interfaces. Interfaces are approximated by a set of characteristic vol-
umes where the fluid components are supposed mixed. The physics in these volumes
has to be defined in order to be able to reproduce coherent interfaces/interfaces and
interfaces/waves interactions. Therefore, we consider a set of equations, derived
from an ensemble averaging [11], describing the behavior of a multi-component flow.
The number of variables in these modelizations grows with the number of flow com-
ponents [23]. This model is well posed in general, but turns out to be efficient
only for flows with few components. Based on the assumption that pressure and
velocity relaxations are instantaneous, some simplified models have been developed
[1, 24, 18, 25]. In these cases, the effects of velocity fluctuations are not considered.

The regime investigated in this paper is non mixed flow, at the physical model
level and weakly mixed flow, at the numerical model level. In this context, some
assumptions are introduced to derived a simplify well posed model containing all
the main characteristics of the flow as the residual viscous effects. One of the main
assumption is that, locally, all the components of the fluid have the same average
velocity. However, the modelization takes into account the difference between the
average velocity and the velocity of each components. Therefore, the modelization
takes into account the velocity fluctuations and, under the Boussinesq approxima-
tion, the problem is well posed. Moreover, some entropy balance equations are
obtained and they are still valid at the vanishing viscosity limit.

Numerical method is developed, in the finite volumes framework. The physical
model used in the present work is governed by non-conservative equations and some
non classical behaviors have to be considered [8, 22]. At the discrete level these
properties are preserved by a nonlinear projection formulation [2, 3]. Sources terms
are split and integrated analytically. The proposed numerical approach is validated
with the computation of the Richtmeyer-Meshkov interface instability.

The paper is organized as follows. In the first section the derivation of physical
model is proposed and the mathematical properties are established. The second
section is devoted with the numerical approximation. Then, numerical results are
presented and analyzed before the conclusion.

2 The physical model

Let us consider a multi-component flow and assume that heat effects, body forces
and some dissipation terms can be neglected. Using ensemble averaging, Drew and
Passman [11] derived the following model for multi-component flow [11](pages 126-
130):

∂t(αℓρ̃ℓ) + ∇ · (αℓρ̃ℓuℓ) = ˙̃ρℓ, (1)

∂t(αℓρ̃ℓuℓ) + ∇ · (αℓρ̃ℓuℓ ⊗ uℓ) = ∇ · (αℓ(σℓ + σ′
ℓ)) + u̇ℓ, (2)

∂t(αℓρ̃ℓeℓ) + ∇ · (αℓρ̃ℓeℓuℓ) = αℓσℓ : ∇uℓ + αℓρ̃ℓǫℓ + ėℓ (3)

International Journal on Finite Volumes 2



Numerical model of a multi-fluid flow

and
αℓρ̃ℓǫℓ = −∂t(αℓρ̃ℓkℓ) −∇ · (αℓρ̃ℓkℓuℓ) + αℓσ

′
ℓ : ∇uℓ + k̇ℓ, (4)

where αℓ, ρ̃ℓ, uℓ, eℓ and σℓ are respectively the averaged volume fraction, density,
velocity, internal energy and stress tensor of the fluid component. The kinetic tur-
bulent energy of fluid components is denoted kℓ while ǫℓ denotes its dissipation rate.
The mean density ρ̃ℓ is the mass of constituent ℓ per unit volume of constituent ℓ.
The notation ρ̃ℓ must not be confused with ρℓ that denotes the partial density (also
called the effective density of the component ℓ).

The production of mass ˙̃ρℓ, momentum u̇ℓ, total energy ėℓ, and kinetic turbulent
energy k̇ℓ are defined by the transfer at the interfaces. Du to conservation properties,
we have:

∑

ℓ

˙̃ρℓ =
∑

ℓ

u̇ℓ =
∑

ℓ

ėℓ =
∑

ℓ

k̇ℓ = 0 (5)

When there is no phase transition or chemical reaction at interfaces we have ˙̃ρℓ = 0.
These equations are obtained by introducing a fluctuation velocity which is the
difference u′

ℓ between the complete field v and the mean field uℓ in a representative
volume:

u′
ℓ = v − uℓ, (6)

where uℓ is constant in the representative volume of the averaging approach. The
fluctuation u′

ℓ is defined only where the fluid component ℓ is present. Then, the
Reynolds stress σ′

ℓ and the fluctuation kinetic energy kℓ are associated to u′
ℓ.

In order to derived a simplify model, we assume that relaxation processes are
instantaneous, such that the averaged velocity is the same for all components:

uℓ = u for all ℓ. (7)

Therefore
u′

ℓ = u′, kℓ = k, ǫℓ = ǫ for all ℓ. (8)

The mean stress tensors are defined by σℓ = −pℓId + µℓτ(u). Therefore, under the
Boussinesq approximation, the Reynolds stress is put under the form:

σ′
ℓ = −p′ℓId + µ′

ℓτ(u) with p′ℓ = (γ′ − 1)ρ̃ℓk (9)

where p′ℓ is the spherical part of the tensor, γ′ is a constant ( γ′ = 5
3 for frictionless

collisions [11]) and µ′
ℓ is the coefficient of fluctuation viscosity. After [3] (see also

[6]), we adopt the notation γ′, instead of 5/3, which makes more practical several
computations (for instance, see the lemma 2.2).

Summing over all components the mass, the momentum and the fluctuation
kinetic energy, we obtain:

∂tρ + ∇ · (ρu) = 0, (10)

∂t(ρu) + ∇ · (ρu⊗ u) + ∇(p + p′) = ∇ · ((µ + µ′)τ(u)) , (11)

∂t(ρk) + ∇ · (ρku) + p′∇ · (u) = µ′τ(u) : ∇u− ρǫ, (12)

where
ρ =

∑

ℓ

αℓρ̃ℓ, p =
∑

ℓ

αℓpℓ, p′ =
∑

ℓ

αℓp
′
ℓ, (13)
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µ =
∑

ℓ

αℓµℓ, µ′ =
∑

ℓ

αℓµ
′
ℓ.

As in the turbulence modelization, the evolution of the dissipation rate ρǫ is approx-
imated as follows:

∂t(ρǫ) + ∇ · (ρǫu) +
2

3
C1ρǫ∇ · (u) = µ

′′

τ(u) : ∇u− R (14)

where

µ
′′

= C1
ǫ

k
µ′, R = C2ρ

ǫ2

k

where C1 and C2 are modeling constants. When the fluctuations are at the turbu-
lence level, some numerical values of these constants can be found in [19]. In a rep-
resentative volume of the model the components are isolated (even in a micro-scale
description [11](page 100)). Therefore, the mass fraction Yℓ, the volume fraction αℓ,
the mean density ρ̃ℓ and the partial density ρℓ are related by the following relations:

Yℓ =
mℓ

m
=

ρ̃ℓVℓ

ρV
=

ρ̃ℓ

ρ
αℓ =⇒ ρℓ = ρYℓ = ρ̃ℓαℓ (15)

m and V are notations for mass and volume. We assume that the relaxation pro-
cesses are instantaneous (the same mean velocity) and that there is no phase tran-
sition or chemical reactions. Therefore, we have ėℓ = 0 and the balance of internal
energy of each component writes as:

∂t(ρℓeℓ) + ∇ · (ρℓeℓu) + αℓpℓ∇ · (u) = αℓµℓτ(u) : ∇u + ρℓǫ

The derived model is then described by the balance equations:

∂tρ + ∇ · (ρu) = 0, (16)

∂t(ρu) + ∇ · (ρu⊗ u) + ∇(p + p′) = ∇ · ((µ + µ′)τ(u)) , (17)

∂t(ρℓeℓ) + ∇ · (ρℓeℓu) + αℓpℓ∇ · (u) = αℓµℓτ(u) : ∇u + ρℓǫ, (18)

∂t(ρk) + ∇ · (ρku) + p′∇ · (u) = µ′τ(u) : ∇u− ρǫ, (19)

∂t(ρǫ) + ∇ · (ρǫu) +
2

3
C1ρǫ∇ · (u) = C1

ǫ
kµ′τ(u) : ∇u− C2

ρǫ2

k (20)

where p′ = (γ′ − 1)ρk. The model recovers the usual equation for the total energy

E =
1

2
ρu2 + ρk +

∑

ℓ

ρℓeℓ. Indeed, from (18) we deduce

∂t(
∑

ℓ

ρℓeℓ) + ∇ ·

(

∑

ℓ

ρℓeℓu

)

+ p∇ · (u) = µτ(u) : ∇u + ρǫ. (21)

Now, from (17) we compute the evolution law of the kinetic energy. We set

u ·
(

∂t(ρu) + ∇ · (ρu⊗ u) + ∇(p + p′)
)

= u ·
(

∇ ·
(

(µ + µ′)τ(u)
)

)

. (22)
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Since we have

u · ∂tρu = ρ∂t
u2

2
+ u2∂tρ,

= ∂tρ
u2

2
− u2∇ · (ρu) ,

and

u · ∇ · (ρu⊗ u) = ∇ ·

(

ρ
u2

2
u

)

+
u2

2
∇ · (ρu) ,

the equation (22) reads as follows:

∂t

(

ρ
u2

2

)

+ ∇ ·

(

ρ
u2

2
u

)

+ u∇(p + p′) = u · ∇ ·
(

(µ + µ′)τ(u)
)

. (23)

We sum (19), (21) and (23) to obtain

∂tE + ∇ ·

(

(E + p +
2

3
ρk)u

)

= u · ∇ ·
(

(µ + µ′)τ(u)
)

+ (µ + µ′)τ(u) : ∇u.

Assume that τ(u) is symmetric to write

u · ∇ ·
(

(µ + µ′)τ(u)
)

+ (µ + µ′)τ(u) : ∇u = ∇ ·
(

(µ + µ′)τ(u)u
)

.

The usual conservation of the total energy is thus obtained:

∂tE + ∇ ·

(

(E + p +
2

3
ρk)u

)

= ∇ ·
(

(µ + µ′)τ(u)u
)

(24)

In order to obtain a well posed problem, we need more closure assumptions.

2.1 Closure assumptions and mathematical properties

Let us consider in this section the following 1D formulation of the previous system
for a mixture of np components:























∂tρ + ∂xρu = 0,
∂t(ρu) + ∂x(ρu2 + p + 2

3ρk) = ∂x((µ + µ′)∂xu),
∂t(ρℓeℓ) + ∂x(ρℓeℓu) + p̃ℓ∂xu = µ̃ℓ(∂xu)2 + ρℓǫ, 1 ≤ ℓ ≤ np,
∂t(ρk) + ∂x(ρku) + 2

3ρk∂xu = µ′(∂xu)2 − ρǫ,

∂t(ρǫ) + ∂x(ρǫu) + 2
3C1ρǫ∂xu = C1

ǫ
kµ′(∂xu)2 − C2ρ

ǫ2

k ,

(25)

where p̃ℓ = αℓpℓ and µ̃ℓ = αℓµℓ.
Let us denote by sℓ the specific entropy of a given component. The second law

of the thermodynamic laws, for each component of the fluid, is written as:

deℓ = −Tℓdsℓ − pℓdvℓ, (26)

where Tℓ > 0 is the temperature and vℓ is the specific volume. In the present
work, sℓ is the mathematical entropy instead of −sℓ which denotes the physical
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entropy (see Godlewski and Raviart [15] to further details). As usual, the functions
(vℓ, sℓ) → eℓ(vℓ, sℓ) are assumed to be strictly convex and satisfy:

∂eℓ

∂vℓ
(vℓ, sℓ) = −pℓ < 0 and

∂eℓ

∂sℓ
(vℓ, sℓ) = −Tℓ < 0. (27)

According to the modeling assumptions proposed in [16], the thermodynamics are
completed by the relations:

{

Dtvℓ = λℓDtv
Dtλℓ = 0

(28)

where λℓ > 0 is a given set of parameters and Dtφ = ∂tφ + u∂xφ is the material
derivative of the quantity φ.

Lemma 2.1 When the assumptions (28) are considered with λℓ = ρ
ρ̃ℓ

= αℓ
Yℓ

, smooth
solutions of (25)–(28) satisfy the following entropy inequalities:

∂tρsℓ + ∂xρsℓu = −
λℓµℓ

Tℓ
(∂xu)2 −

ρǫ

Tℓ
≤ 0, ℓ = 1, np. (29)

As a consequence, the following entropy balance equations are obtained

βnp

Tnp

{∂tρsℓ + ∂xρsℓu} −
βℓ

Tℓ

{

∂tρsnp + ∂xρsnpu
}

=
ρǫ

TℓTnp

(

βℓ − βnp

)

, (30)

for 1 ≤ ℓ ≤ np − 1, with βℓ =
λℓµℓ

∑

k λkµk
.

Proof. The identity (29) is obtained from the relation:

ρYℓDteℓ + αℓpℓ∂xu = αℓµℓ(∂xu)2 + ρℓǫ.

Using (27) and (15), this relation writes as:

−ρYℓpℓDtvℓ − ρYℓTℓDtsℓ + λℓYℓpℓ∂xu = λℓYℓµℓ(∂xu)2 + ρℓǫ.

By the assumptions, we have Dtvℓ = λℓDt(1/ρ) = λℓ
ρ ∂xu. Therefore

−ρYℓTℓDtsℓ = λℓYℓµℓ(∂xu)2 + ρYℓǫ.

Then, (29) is proved and (30) follows. �

The entropy balance equations, we have established in the above result, are
devoted to each fluid. In fact, a similar result holds true concerning the turbulence
[3, 6]. Indeed, we have:

Lemma 2.2 The smooth solutions of (25)–(28) satisfy the following turbulent en-
tropy relation

∂tρs′ + ∂xρs′u =
γ′ − 1

ργ′−1

(

µ′(∂xu)2 − ρǫ
)

with s′ =
(γ′ − 1)ρk

ργ′
(31)
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As a consequence, the following entropy balance equations are obtained:

µ′ γ
′ − 1

ργ′−1

{

∂tρsnp + ∂xρsnpu
}

−
λnpµnp

Tnp

{

∂tρs′ + ∂xρs′u
}

=

ρǫ

Tnp

γ′ − 1

ργ′−1
(µ′ − λnpµnp). (32)

Proof. To obtain the identity (31), let us rewrite the evolution law of ρk as follows:

(γ′ − 1)

ργ′

(

∂t(ρk) + u∂x(ρk) + γ′ρk∂xu

)

=
(γ′ − 1)

ργ′

(

µ′(∂xu)2 − ρǫ

)

. (33)

Now, from the continuity law, we have:

(γ′ − 1)ρk

(

∂t
1

ργ′
+ u∂x

1

ργ′
−

γ′

ργ′
∂xu

)

= 0. (34)

Then, (33) and (34) give

∂ts
′ + u∂xs′ =

γ′ − 1

ργ′

(

µ′(∂xu)2 − ρǫ
)

.

Using the relation ρ
(

∂ts
′ + u∂xs′

)

= ∂tρs′ + ∂xρs′u, the relation (31) is obtained.

The equation (32) is obtained by combining (29) and (31). �

From the system (25), it is very easy to derive the following equation:

∂t
kC1

ǫ
+ u∂x

kC1

ǫ
= (C2 − C1)k

C1−1. (35)

In the sequel, the variable kC1

ǫ will be used instead of ρǫ.
To summarize, the energy and the entropy balance equations (see Lemma 2.1),

but also the additional turbulent evolution laws (see Lemma 2.2), are used to refor-
mulate the non conservative system (25) under the following equivalent form:



















































∂tρ + ∂xρu = 0,
∂tρu + ∂x(ρu2 + p + 2

3ρk) = ∂x((µ + µ′)∂xu),
∂tE + ∂x(E + p + 2

3ρk)u = ∂x((µ + µ′)u∂xu),
βnp

Tnp
{∂tρsℓ + ∂xρsℓu} −

βℓ
Tℓ

{

∂tρsnp + ∂xρsnpu
}

= ρǫ
TℓTnp

(βℓ − βnp),
λnpµnp

Tnp
{∂tρs′ + ∂xρs′u} − µ′ γ′−1

ργ′−1

{

∂tρsnp + ∂xρsnpu
}

=
ρǫ

Tnp

γ′−1

ργ′−1
(λnpµnp − µ′),

∂tρ
kC1

ǫ + ∂xρkC1

ǫ u = (C2 − C1)ρkC1−1,

(36)

with 1 ≤ ℓ ≤ np−1. According to the entropy balance equation, let us just emphasize
that snp is not an unknown of (36) but turns out to be a function of the unknowns:
snp := snp(ρ, ρu,E, ρs1, ..., ρsnp−1, ρs′, ρkC1ǫ).
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Let us assume here that the viscosity functions are a product of the characteristic
viscosity of the phase by a function of the partial temperature. We consider the
following arbitrary choice:

λnpµℓ = (YℓTℓ)
mℓ µ̄ℓ 1 ≤ ℓ ≤ np,

where mℓ > 0 are real constants to be fixed. Then, when the partial temperatures
are given (T̃ℓ = YℓTℓ = p̃ℓv/(γℓ − 1)), the variables βℓ can be computed as follows:

βℓ =
(T̃ℓ)

mℓ µ̄ℓ
∑

1≤l≤np

(T̃l)
ml µ̄l

. (37)

Each βℓ turns out to be a level set function characterizing material interfaces.
The conservative variable wC , the associated flux f(w), the diffusion D(w) and

the source SC terms are defined by:

wC =













ρ
ρu
E

ρY1
ρkC1

ǫ













, f(w) =













ρu
ρu2 + p + p′

(E + p + p′)u
ρY1u
ρkC1

ǫ u













,

D(w) =













0
∂x((µ + µ′)∂xu)
∂x((µ + µ′)u∂xu)

0
0













, SC(w) =













0
0
0
0

(C2 − C1)ρkC1−1













,

where w = t(wC ,wNC). The vector of non conservative variables wNC and the
associated flux g(w), the source term SNC(w, ρsnp) and a vector Q(w, ρsnp) are
defined by:

wNC =











ρs1
...

ρsnp−1

ρs′











, g(w) =











ρs1u
...

ρsnp−1u
ρs′u











,

Q(w, ρsnp) =

















β1Tnp

T1βnp

...
βnp−1Tnp

Tnp−1βnp
µ′Tnp (γ′−1)

λnpµnpργ′−1

















, SNC(w, ρsnp) =















ρǫ(β1−βnp)

T1βnp

...
ρǫ(βnp−1−βnp )

Tnp−1βnp
ρǫ

λnpµnp (λnpµnp−µ′)
γ′−1

ργ′−1















.

Therefore the model rewrites as:
{

∂tw
C + ∂xf(w) = D(w) + SC(w),

∂tw
NC + ∂xg(w) = SNC(w, ρsnp) + Q(w, ρsnp)

{

∂tρsnp + ∂xρsnpu
}

.
(38)
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Let us note that the first order extracted system, given by

{

∂tw
C + ∂xf(w) = 0

∂tw
NC + ∂xg(w) = Q(w, ρsnp)

{

∂tρsnp + ∂xρsnpu
}

,

is hyperbolic. The eigenvalues are

u ± c, u, with c2 =

√

γp + γ′p′

ρ
.

The eigenvalues u ± c are one order of multiplicity while the eigenvalue u is np + 3
order of multiplicity. According to the works [4, 16], one can prove the existence of
traveling wave solutions. These solutions are useful to propose a definition of shock
wave solutions of the non-conservative hyperbolic system (see [8] or [4, 16]). This
is not the purpose of the present work and we focus our attention on the numerical
approximate solutions.

3 Numerical approximation

This section is devoted to a nonstandard finite volume method to approximate the
solutions of the non-conservative system (38). The principle of this method, called
“nonlinear projection method”, is described in [3] (see also [6]). For the sake of
simplicity, this method is presented in this section in the context of the bi-fluid
model. The usual numerical methods are based on a two steps splitting method :

Convection is defined by the system:











∂tw
C + ∂xf(w) = 0,

∂tw
NC + ∂xg(w) = Q(w, ρsnp)

{

∂tρsnp + ∂xρsnpu
}

,

w(t = 0, .) = wn.

(39)

It is solved by a nonlinear projection method. It is important to note that
this nonlinear projection procedure can be applied to any hyperbolic system
in the form (39). The principle of this method is based on a two steps splitting
technique:

• Time evolution. For given wn, the following conservative system is ap-
proximated with wn as initial data:







∂tw
C + ∂xf(w) = 0,

∂tw
NC + ∂xg(w) = 0,

w(t = 0, .) = wn.
(40)

At the end of this first step, we obtain a prediction, denoted wn+ 1

3 .

International Journal on Finite Volumes 9
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• Nonlinear projection. In this correction step, the variables wn+ 2

3 com-
puted in the previous step are preserved and the entropy balance equa-
tions are enforced:











∂tw
C = 0,

∂tw
NC + ∂xg(w) = Q(w, ρsnp)

{

∂tρsnp + ∂xρsnpu
}

,

w(t = 0, .) = wn+ 1

3 .

Let us emphasize that the nonlinear projection procedure enforces the
consistency between the non-conservative terms and the numerical ap-
proximations. The numerical approximation of the non-conservative prod-
ucts is thus free from the numerical viscosity and the discrete form of the
diffusion.

Diffusion and source terms are taken into account by solving the system:







∂tw
C = D(w) + SC(w),

∂tw
NC = SNC(w, ρsnp),

wC(t = 0, .) = wn+ 2

3 ,

(41)

where wn+ 2

3 is the solution after the nonlinear projection. At the end of this step
we have computed wn+1.

In the next sections we will give details for the different steps of the numerical
approximation.

3.1 Convection step: The 1-D case

In order to solve the system (39), one can use an exact or an approximated Godunov
solver [3], a relaxation scheme [6] or any other numerical solver. In the present
analysis, the entropy inequalities are obtained in the case of an exact Godunov
scheme for a bi-fluid mixture.

We consider a structured mesh in space and time, defined by the cells Ii =
(xi− 1

2

, xi+ 1

2

) and the time intervals [tn, tn+1):

tn = n∆t and xi+ 1

2

= (i +
1

2
)∆x,

where ∆t is the time step and ∆x the cells length. The approximated solution, at
time tn, will be constant in each cells Ii. We denote by wn

i the approximate value
at time tn in cell Ii of the variable w. The numerical solution wn

h(x) = wh(x, tn) is
then defined by:

wn
h(x) = wn

i when x ∈ Ii.

Under the CFL like condition:

∆t

∆x
max |λi(w)| ≤

1

2
, (42)

the solution of the Cauchy problem of the system (40), with the initial data wn
h(x),

is composed by the solutions of non interacting elementary Riemann problems at
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the cells interfaces. Let us denote by wi+ 1

2

(ξ) the exact solution of the elementary

Riemann problem centered at xi+ 1

2

:

wi+ 1

2

(ξ) = W
(

ξ,wn
i ,wn

i+1

)

with ξ =
x − xi+ 1

2

t − tn
.

The Godunov method is obtained by the projection of the solution composed of
elementary Riemann problems on the space of piecewise constant functions on the
cells. This is achieved by an averaging over each cell [15]. Let us define the numerical
flux by:

φw

i+ 1

2

= t
(

f(wi+ 1

2

(0)),g(wi+ 1

2

(0))
)

,

Then the numerical scheme in the conservative first step is:

w
n+ 1

3

i = wn
i −

∆t

∆x

(

φw

i+ 1

2

− φw

i− 1

2

)

. (43)

The convex entropy of the system (40), {ρs2}(w
n+ 1

3

i ) satisfies a discrete entropy
inequality:

{ρs2}(w
n+ 1

3

i ) − (ρs2)
n
i +

∆t

∆x

(

φρs2

i+ 1

2

− φρs2

i− 1

2

)

≤ 0, (44)

where
φρs2

i+ 1

2

= φρ

i+ 1

2

s̃2(wi+ 1

2

(0)).

Moreover, the positiveness of (e1)
n+ 1

3

i and (e2)
n+ 1

3

i is ensured as soon as the density

ρ
n+ 1

3

i is positive.
In general, the rate of the entropy dissipation associated to ρs2 is strictly nega-

tive. By the Jensen inequality, we have:

{ρs2}(w
n+ 1

3

i ) ≤
1

∆x

∫ xi+1/2

xi−1/2

{ρs2}(w)(x, tn+1)dx. (45)

This means that the dissipation of the entropy {ρs2} is strictly negative. On
the other hand, the specific entropies s1 and s′ are simply advected by the flow and
therefore, are preserved by the classical (L2) projection step. At the discrete level,
these discrepancy results cause the failure of the entropy balance equations (30) and
(32). In the second step, the entropy dissipation is redistribute in order to enforce

the balance (30) and (32). Therefore, (ρs1)
n+ 2

3

i and (ρs′)
n+ 2

3

i are computed from a
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discrete approximation of the entropy balance equations:

β
n+ 1

3

i

(T2)
n+ 1

3

i

(

{ρs1}(w
n+ 2

3

i ) − (ρs1)
n+ 1

3

i

)

−

1 − β
n+ 1

3

i

(T1)
n+ 1

3

i

(

(ρs2)
n+ 2

3

i − (ρs2)
n+ 1

3

i

)

= 0, (46)

(λ2µ2)
n+ 1

3

i

(T2)
n+ 1

3

i

(

{ρs′}(w
n+ 2

3

i ) − (ρs′)
n+ 1

3

i

)

−

(µ′)
n+ 1

3

i

γ′ − 1

(ρ
n+ 1

3

i )γ′−1

(

(ρs2)
n+ 2

3

i − (ρs2)
n+ 1

3

i

)

= 0, (47)

where

(ρs2)
n+ 1

3

i = (ρs2)
n
i −

∆t

∆x

(

φρs2

i+ 1

2

− φρs2

i− 1

2

)

.

The above nonlinear problem in the unknown (wNC)
n+ 2

3

i can be shown to admit a
unique solution as soon as the approximate Riemann solver involved in the first step
obeys discrete entropy inequality for the Lax pair (ρs2, ρs2u). This in turn uniquely

defines (ρs2)
n+ 2

3

i according to:

(ρs2)
n+ 2

3

i = {ρs2}
(

w
n+ 2

3

i

)

.

In addition, we have (see [3] for the proof):

Theorem 3.1 Let us consider the scheme (43). Under the CFL restriction (42),
the following discrete entropy inequalities are satisfied:

{ρΨℓ(sℓ)}(w
n+ 2

3

i ) − (ρΨℓ(sℓ))
n
i

+
∆t

∆x

{

{ρΨℓ(sℓ)u}
n
i+1/2 − {ρΨℓ(sℓ)u}

n
i−1/2

}

≤ 0, ℓ = 1, 2,

for any strictly increasing functions Ψℓ assumed to satisfy the convexity of the maps
w → ρΨ1(s1) and w → ρΨ2(s2(w)). The following maximum principles for the
specific entropies are met:

(sℓ)
n+ 2

3

i ≤ max((sℓ)
n
i−1, (sℓ)

n
i , (sℓ)

n
i+1), ℓ = 1, 2. (48)

The partial specific internal energies (e1)
n+ 2

3

i and (e2)
n+ 2

3

i stay positive as soon as

the density ρ
n+ 2

3

i is positive and the maximum principles 0 ≤ (Y1,2)
n+ 2

3

i ≤ 1 are
satisfied.

For the multidimensional cases, only the time evolution step is different from the
1D case. However, the numerical flux is obtained by a extended 1D flux at interfaces
between cells.
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3.2 Diffusion and source terms

In the present paper, we do not develop the discrete formulation of the diffusive
operator and we refer the reader to [5, 19] (and the references therein) where several
numerical methods are proposed. Concerning the source terms, we assume that
the size of source terms is small compared to dynamic of the flow (governed by
the hyperbolic system). Therefore, the numerical approximation is achieved by a
splitting technique. The Cauchy problem solved in the additional step is :























∂tρ = 0, ∂tρu = 0, ∂tρY = 0,
∂tρℓeℓ = ρℓǫ,
∂tρk = −ρǫ,

∂tρǫ = −C2ρ
ǫ2

k
.

This system is integrated analytically with the initial value wn+ 2

3 to obtain:










































ρn+1 = ρn+ 2

3 , un+1 = un+ 2

3 , Y n+1 = Y n+ 2

3 ,

kn+1 =

(

(kn+ 2

3 )C2

(C2 − 1)ǫn+ 2

3 ∆t + kn+ 2

3

)
1

C2−1

,

ǫn+1 =
ǫn+ 2

3 kn+1

(C2 − 1)ǫn+ 2

3 ∆t + kn+ 2

3

,

en+1
ℓ = e

n+ 2

3

ℓ + (kn+ 2

3 − kn+1), 1 ≤ ℓ ≤ np.

Therefore the numerical time step is completely defined.

3.3 The 2-D extension

The multidimensional extension does not involve large difficulties excepted the stan-
dard problems meet when approximating Euler or Navier-Stokes equations. The 2-D
system is given by
{

∂tw
C + ∂xF1(w) + ∂yF2(w) = D(w) + SC(w),

∂tw
NC +∇ · (G(w)) = SNC(w, ρsnp)+ Q(w, ρsnp)

{

∂tρsnp + ∇ ·
(

ρsnpu
)}

,

where

wC =













ρ
ρu
E

ρY1
ρkC1

ǫ













, F1(w) =



















ρu1

ρu2
1 + p + p′

ρu1u12

(E + p + p′)u1

ρY1u1
ρkC1

ǫ u1



















, F2(w) =



















ρu2

ρu1u12

ρu2
2 + p + p′

(E + p + p′)u2

ρY1u2
ρkC1

ǫ u2



















,

and

u =

(

u1

u2

)

, G(w) =











ρs1u
...

ρsnp−1u

ρs′u











.
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x=0

y=0

x= 14 cm

y= 3.6 cm

ρ = 7.89
u = 55.5
v = 0

p = 683652

γ = 1.4

ρ = 1.87
u = −453

v = 0

p = 5 10
4

γ = 1.4

ρ = 2.85
u = −453

v = 0

p = 5 10
4

γ = 1.66

Figure 1: Initialization of the non fluctuating variables.

Once again, we adopt a splitting technique. We do not detail the numerical approx-
imation of the diffusion operator and the source terms which meet a usual form (see
[19]). Following the 1-D case, we focus our attention on the convection step.

The updating formula (43) to evolve in time the unknown vector w, is now given
by

w
n+ 1

3

i = wn
i −

∆t

ai

∑

j∈V(i)

φw

ij ,

where ai is the area of the control volume, V(i) denotes the set of the neighboring cells
to cell i. The numerical flux function φw

ij is computed from the exact or approximate
solution of the elementary Riemann problem stated at the cell interface

φw

ij = φw(nij ,w
n
i ,wn

j ),

where nij is the outer unit normal to the cell interface between cells i and j. The
second step of the splitting, namely the nonlinear projection, remains given by (46)-

(47) but for the following definition of (ρs2)
n+ 1

3

i :

(ρs2)
n+ 1

3

i = (ρs2)
n
i −

∆t

ai

∑

j∈V(i)

φρs2

ij .

The extension of the scheme to multi-dimension is thus achieved.

4 Numerical results

We consider in this section the numerical computation of a 2D Richtmeyer-Meshkov
instability. This instability is developed by the interaction of a shock wave with a
material interface between two non mixing fluids. We assume that the fluid compo-
nents are perfect gas and that the fluctuations are at the turbulence scale. Therefore,
we can use the following modeling constants: C1 = 1.4 and C2 = 1.9 (see [19]).

The discrete scheme is formulated on unstructured triangular meshes, and the
control volumes are of cell vertex type (see Nkonga [20]). The numerical fluxes at cells
interfaces are computed by the relaxation scheme proposed in [6]. The accuracy of
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ǫ = ǫ0
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Figure 2: Initialization of the fluctuating variables.

the approximation is improved by a Runge-Kutta second order time approximations
and second order space approximations based on a MUSCL type technique.

The computational domain is [0, 0.14m] × [0, 0.036m] recovered by an unstruc-
tured triangulation made of 80000 triangles with 40501 vertices. The characteristic
sizes of the mesh are ∆x ≃ 0.14

400 and ∆y ≃ 0.036
100 , the CFL number is fixed to 0.5 for

all the computations.
Initially, the two components of the fluid are separated by a oscillating curve

interface located at x = 0.12 and of size 0.005, defined by (see [16]):

x − 0.12 = 0.005 cos

(

2π(y − 0.018)

0.036

)

This interface will be crossed by a shock, initially located at x = 0.07m, associated
to the left state given by ρ = 7.89 kg/m3, P = 683652 Pa, u = 55.5 m/s and the
shock wave velocity σ = 213.5 m/s. The reader is also referred to the work of Louis
[17] where similar numerical experiments are performed.

Computations are performed for different sizes (d) of the fluctuating zone around
the interface and for different values of the fluctuating kinetic energy (k∗). The
different tests case performed here are defined by:

Test case 0 d = 0

Test case A k∗ = 10Pa ǫ∗ = 18 d = 5mm

Test case B k∗ = 10Pa ǫ∗ = 18 d = 30mm

Test case C k∗ = 30000Pa ǫ∗ = 16200000 d = 5mm

The numerical interface is obtained by the fraction β defined by (37). Numerical
results give a behavior of the Richtmeyer-Meshkov instability that is accelerated and
more developed when fluctuations are considered (figure 4). Indeed, the profile at the
time t = 2.0 ms when there is no fluctuation is comparable to the profile obtained at
the time t = 1.61 ms with an initial fluctuating zone around the material interface
(see figure 3). This modification slowly depends on the initial fluctuations zone size
or the fluctuation level. The computations obtained for the test cases A, B and C
are very close (see figure 5).
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5 Conclusion

Under some physical assumptions, we have derived a simplify model for multi-fluid
flow, taking into account the influence of velocity fluctuations. The model is close
to the classical turbulence model. It is fundamentally non conservative but is as-
sociated to some entropy inequalities. Based on the nonlinear projection, we have
developed a numerical approximation consistent with the main properties of the
model. Numerical computations have point out the importance of the velocity fluc-
tuations on the development of the Richtmeyer-Meshkov instability. Very different
behaviors are obtained when fluctuations are considered. However, the global be-
havior is slowly dependent on the size of the initial fluctuating zone and the level of
fluctuations control the velocity of the instabilities.
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Initial interface

Test case 0 t = 1.05 ms Test case A

t = 1.30 ms

t = 1.61 ms

t = 2.00 ms

t = 2.33 ms

Figure 3: Influence of the fluctuations on the behavior of the Richtmeyer-Meshkov
instability. Time evolution of a color function solution with (right) and without
(left) an initial fluctuating zone around the material interface. Profiles (defined by
the same color function) at the times t = 0, t = 1.05 ms, t = 1.3 ms, t = 1.61 ms,
t = 2.0 ms, t = 2.33 ms.
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Test case 0

Test case A

Figure 4: Comparison of the numerical material interface profiles (defined by the
same color function), at the time t = 2.33 ms, between computations performed
without (Test case 0) and with (Test case A) an initial fluctuating zone around the
material interface.
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Test case 0

Test case A

Test case B

Test case C

Figure 5: Effects of the initial fluctuating conditions on the Richtmeyer-Meshkov
instability. Profiles (defined by the same color function) at the time t = 2.33 ms.
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Test case A

Test case B

Test case C

Figure 6: Fluctuating kinetic energy ρk at time t = 2.33 ms. Profiles for the test
cases A, B and C
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