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Abstract

This study is devoted to the flood wave propagation modelling cor-

responding to a realistic situation. The equations that governs the

propagation of a flood wave, in natural rivers, corresponds to the

free surface flow equations in the Shallow Water case. The obtained

two dimensional system, known as Saint Venant’s system, is derived

from the three-dimensional incompressible Navier Stokes equations by

depth-averaging of the state variables. This system is written in a

conservative form with hyperbolic homogeneous part. The discretization

of the convection part is carried out by the use of the finite volume

method on unstructured mesh. To increase the accuracy of the scheme,

the MUSCL technique is used. The diffusive part is discretized using

a Green-Gauss interpolation technique based on a diamond shaped

co-volume. For the numerical experiment, we have studied a realistic

channel of the Ourika valley which is located in Morocco. The flood

occurred on August 1995 is simulated with the objective of evaluating

the behavior of the wave propagation in the channel. The results of the

proposed numerical model gives velocities and free surface elevations at

different stopped times of the simulation.

Key words : Shallow water equations, Finite volume method,

Unstructured mesh, Roe scheme, Green-Gauss interpolation, Manning

equation, Flood, Ourika valley



Computing two dimensional flood wave propagation : Application to the Ourika valley

1 Introduction

Flooding is both a phenomenon which is either natural or involuntary caused by man-
made changes in the environment, or even by a voluntary accidental human action.
This flooding usually affects lands located close to a water course or water body
with variable levels. It may regularly occur, in temperate and cold climatic zones
for instance when snow melts, or in tropical and monsoon countries during the rainy
season. It may be random or accidental when flooding is caused by exceptionally
heavy rain or dam failure.

From the fluid mechanics point of view propagation is an extremely complicated
phenomenon involving the dynamics of a fluid with a free boundary in intense turbu-
lent motion under the acceleration of gravity. Recently, the problem of flood wave
propagation, represent a great challenge in the mathematical modelling process.
When trying to describe mathematically this situation, one is faced with solving a
full three dimensional unsteady Navier-Stokes problem with a free boundary. It is
well known, however that its not easy to compute if all the space and time scales
involved during a flood are to be resolved.

If only the main features of the flow pattern are of interest and no attention is
paid in resolving smaller scale effects such as secondary flows, boundary layers or
turbulence, one may resort to a simpler mathematical representation of the physical
reality. This is certainly the case in many engineering applications, where depending
on the cause that produced the flood, its severity or the time interval to be modelled,
a simple kinematic description can be sufficient to provide the requested answers.

In this work we shall be concerned with situation in which the full nonlinear
Saint-Venant or Shallow Water equations are needed to account for dynamical ef-
fects such as propagation of water fronts. One feature of this set of hyperbolic
equations is the formation of discontinuous solutions, which can be difficult to rep-
resent accurately. However, the development of finite volume methods for hyperbolic
conservation laws has been a rapidly growing area for the last decade due to its at-
tractive features and specifically nice shock capturing ([AG 94], [CHV 80], [TMO
05]).

The proposed mathematical model is discretized by using the finite volume
method on unstructured mesh. The discretization uses a cell-centred finite vol-
ume formulation (see for example [BW 95]). The convective fluxe is approached
using the Roe approximate Riemann solver (see [RPL 81], [LRJ 92]).

To increase the accuracy of the scheme, gradient information needs to be used.
The states are supposed to be in a set of linear piecewise functions in each control
volume. However, the obtained second order scheme is not monotone. To pre-
serve the TVD (Total Variation Diminishing) property we have used the MUSCL
(Monotonic Upstream Schemes for Conservations Laws) technique [YEE 89]. This
procedure consists in limiting the gradient of the state variable on each element such
that new extrema is not generated. To discretize the diffusive part, Green-Gauss
type interpolation has been performed (see [CVV 96]). The gradient on each edge of
a cell is approached using the Green theorem combined to an interpolation process
developed to ensure the weak consistency of the scheme (see [CVV 96], [CVV 99]).
Furthermore, an explicit Euler scheme for time integration is used.
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For the numerical experiment, the proposed model is applied to the realistic
situation of the Ourika valley that is located in the high Atlas mountain some forty
kilometers south of the city of Marrakech in Morocco. The flood occurred on August
17, 1995, is simulated in order to show the water depth profile at different stopped
times of the simulation. In this intention one has the data of transverse profiles of
the river given on 15 stations separated by 200m on average. The channel considered
in this work is then 2800m long. The hydrograph of flow’s rates measured at time
of the flood at the station of Aghbalou (the upstream of the catchment area) is
used as an upstream boundary condition. The other calculation parameters have
been assessed on the basis of regional and bibliographical information. The results
of this realistic application show the consistency of the suggested numerical model.
This model could be used in the future as a basis for undertaking a study to build
a system for managing the flood phenomenon with the objective of forecasting the
flood events on the Ourika valley and on other areas.

The paper is organized as follows. In the next section, we define the governing
equations. In section 3, we present formally the mathematical approach. In section
4, we carry out the numerical treatment of the convective part and the diffusive
part, also convergence of the obtained scheme and numerical treatment of boundary
conditions are discussed. The numerical experiment is fulfilled in section 5. In
section 6, the flood simulation is presented. Finally in sections 7, 8, we discuss the
obtained results and we end by some concluding remarks.

2 Governing equations

It is assumed that the flow is mainly two dimensional taking place in a horizontal
plane (x − y) parallel to the hearth surface, and being described by water depth
H, and the two cartesian components of the the water velocity in the plane of
motion, U, V . Any dependence of the flow variables on the vertical coordinate (z)
is neglected and it is also assumed that the vertical velocity is zero. Considering a
hydrostatic pressure distribution, the 2-D Saint-Venant equations can be derived by
depth averaging the Navier-Stokes equations with appropriate boundary conditions
(see [AM 05], [BH 06], [BOT 05] [TAI 02], [TMO 05]).

2.1 Shallow Water equations in two dimensions

The obtained 2−D Shallow Water equations can be written as the following:
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Figure 1: Description of the physical variables



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∂
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∂x
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+
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ρ

∂
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∂(HV )

∂y
) + gH(S0y − Sfy),

(1)

Where x, y are the horizontal coordinates, t is the time, U = U(x, y, t) is the
depth-averaged velocity in the x direction. V = V (x, y, t) is the depth-averaged
velocity in the y direction. H = H(x, y, t) is the instantaneous water depth (see
figure 1.). ν is the laminar viscosity, g stains for the gravity acceleration. S0x and

S0y are the bottom bed slopes defined as: S0x = −∂Zf
∂x

and S0y = −∂Zf
∂y

, Zf

being the bed elevation. Sfx, Sfy correspond to the bottom friction slopes, when
approximated by the Manning formula take the form:

Sfx =
n2U
√
U2 + V 2

H
4
3

, Sfy =
n2V
√
U2 + V 2

H
4
3

(2)

where n is the Manning roughness coefficient.
Written in general conservative form the Saint-Venant equations in two dimen-

sions read:

∂W

∂t
+
∂F (W )

∂x
+
∂G(W )

∂y
= Rx (W ) +Ry (W ) + S(W ) (3)

Here : W is the vector of flow variables, F and G are the cartesian components
of momentum flux.

W = (H, qu = HU, qv = HV )T ,
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F (W ) = (qu,
q2
u

H
+
gH2

2
,
quqv
H

)T , G(W ) = (qv,
quqv
H

,
q2
v

H
+
gH2

2
)T ,

Rx(W ) = (0,
∂

∂x
(ν
∂qu
∂x

),
∂

∂x
(ν
∂qv
∂x

))T , Ry(W ) = (0,
∂

∂y
(ν
∂qu
∂y

),
∂

∂y
(ν
∂qv
∂y

))T ,

S(W ) = (0, Su, Sv)
T , Su = gH(S0x − Sfx), Sv = gH(S0y − Sfy)

Rx(W ) and Ry(W ) are a diffusive terms, S(W ) is a source term.
We note that source term of (3) is stiff , implementing it directly causes a numeri-

cal instability as it was shown by Ambrosi [AD 95] for a simple explicit discretization
of source term integrated in the finite volume scheme for 1D Shallow Water model.

An alternative approach is to employ a time-splitting in which one alternative
between solving a system of conservation laws, with no source terms, and a system
of ordinary differential equations modelling the source terms ([LRJ 90], [CBMOB
96], [BME 98], [MLA 97]). In the simplest case this splitting takes the form [YEE
89]:

Wn+1 = LhsL
h
fW

n ,

where Lhf represent the numerical solution operator for the conservation law:

∂W

∂t
+
∂F (W )

∂x
+
∂G(W )

∂y
−Rx (W )−Ry (W ) = 0.

over the time h = ∆t, and Lhs the numerical solution operator for the ODE:

∂W

∂t
= S(W ) .

In this work, for simplicity, the bottom bed slopes and the roughness coefficient n
are sated equal to zero, the source term is then neglected.

2.2 Boundary conditions

The above set of equations should be supplemented by a set of initial and appropriate
boundary conditions to obtain a well posed problem.

Both of the water depth and the depth-averaged x and y velocity components
need to be specified as initial condition:

W (x, y, 0) = W0(x, y).

The same water surface elevation is assigned to every node point in a finite
volume network and velocity is zero everywhere. Physically, there are two types of
boundaries: Solid boundary and open boundary. The flow across a solid boundary
generally equals to zero. In addition, either the tangential velocity or tangential
stress needs to be specified on a solid boundary. On the open boundary the value
are usually unknown and experience is needed to specify physically realistic values
for engineering application. In our case we take Neumann condition.
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3 Mathematical approach

One can formally write the problem under the following form :
Find W ∈ C0([0, t],H(Ω)) such that :





∂W

∂t
+
∂F (W )

∂x
+
∂G(W )

∂y
= Rx (W ) +Ry (W ) + S(W ) in Ω,

αW + β
∂W

∂x
= g over Γ = ∂Ω,

W (x, 0) = W0(x) in Ω.

(4)

Where: W ∈ C0([0, T ], H(Ω)), Ω is a bounded open set of R2, Γ = ∂Ω, and
H(Ω) is an Hilbert space, which is L2(Ω) herein .

For such a complicated set of equations, it is rather difficult to derive a solution
of ( 4) in the strong meaning or even to prove the existence and uniqueness of
this solution. Nevertheless, physicists assure us that under realistic assumptions,
physical solutions do exist.

We seek here to compute a weak solution of the problem by first writing an
approximation of the temporal derivation which gives :

For Wn ∈ L2(Ω), find Wn+1 ∈ L2(Ω) such that :

Wn+1 = Wn + ∆t A(Wn).

Where A is an operator including the transport terms, the diffusive terms and
the source terms of the PDE. More specifically

A(W ) = −∂F
∂x

(W )− ∂G

∂y
(W ) +Rx(W ) +Ry(W ) + S(W ).

Since we are not sure that those terms are differentiable in the classical sense, we con-
sider the last equation in the sense of the theory of distributions which is equivalent
to writing :

〈Wn+1,Φ〉L2(Ω) = 〈Wn + ∆t A(Wn),Φ〉L2(Ω) ∀Φ ∈ D′(Ω), (5)

To obtain an approximation of W n+1, we make a projection of ( 5) in a finite
dimension subspace Vh of L2(Ω). Thus we rewrite our problem:

For Wn ∈ Vh(Ω), find Wn+1 ∈ Vh(Ω) such that :

〈Wn+1,Φi〉L2(Ω) = 〈Wn + ∆t A(Wn),Φi〉L2(Ω), ∀Φ (6)

Where (Φi)i=1,...M is a basis of Vh(Ω). More precisely, we consider a partition of
Ω in finite volume cells Ci=1,...,nc and take the basis of Vh(Ω), (χi)i=1,.....,nc, where χi
is the characteristic function of the cell Ci .

Equation (5) can now be written as :

〈Wn+1, χi〉L2(Ω) = 〈Wn + ∆t A(Wn), χi〉L2(Ω). (7)
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4 Spatial discretization

The advantage of the unstructured meshes is that they can be applied to the complex
geometries. In this type of mesh, at each node, the connection with the neighbors
ones must be explicitly defined in the connectivity matrix.

In this work, the unstructured mesh is composed of triangles, (see figure 6) show
meshes generated by using the Dalaunay triangulation technique. We use the ”Cell-
Centred” formulation which all the state variables are updated at the centroid of each
cell. Integration of the system (3) over a control volume Ci and Gauss divergence
formulas lead to:

meas(Ci)
∂Wi

∂t
+

∫

∂Ci

(F (W )nx+G(W )ny)dσ =

∫

Ci

(Rx(W )+Ry(W ))dσ+

∫

Ci

S(W )dσ

(nx, ny) are the components of the outward unit normal to ∂Ci.

4.1 Numerical treatment of the convection

There are several ways to carry out the convection flux ( here we present an upwind
scheme based on a Roe’s approximate Riemann solver). Consider the hyperbolic
part of equation (3) given by:

∂W

∂t
+
∂F (W )

∂x
+
∂G(W )

∂y
= 0 (8)

Integrating the equation (8) on a control volume Ci and using assumption that
W is constant by volume, it comes:

meas(Ci)
∂Wi

∂t
+

∫

∂Ci

(F (W )nx +G(W )ny)dσ = 0 (9)

Here Wi is the value of W on cell Ci.
Let

IF (W ) = F (W )nx +G(W )ny

The integral term can be written as

∫

∂Ci

IF (W )dσ =
∑

j

∫

Γij

IF (W )dσ (10)

Γij is the interface between the cells Ci , Cj for all triangle Cj having a common
edge with the cell Ci.

To evaluate the integral over the interface Γij , we use the following approximation

∫

Γij

IF (W )dσ = Φ(Wi,Wj , nij)meas(Γij) (11)

Roe proposed a particular choice of Φ(Wi,Wj , nij) based on the resolution at
each time step of approximate linear Riemann problems on each cell boundary of
the mesh, knowing the initial left state Wi and the right state Wj (see [LRJ 90],
[LRJ 92], [RPJ 81]):
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Φ(Wi,Wj ,
→
n ij) =

1

2
(IF (Wi,

→
nij) + IF (Wj ,

→
nij))

−1

2

∣∣∣B(W̃ ,
→
n ij)

∣∣∣ (Wj −Wi),
(12)

where B(W̃ ,
→
n ij) is an average Jacobian matrix, Wi and Wj are the initial left

state and right state of the interface Γij . The Roe-averaged value W̃ is related to
Wi and Wj and is taken such that the conservativity condition is satisfied exactly

IF (Wj)− IF (Wi) = B(W̃ ,
→
n ij)(Wj −Wi).

On other side, the temporal term is discretized using an explicit Euler scheme
lake:

∂Wi

∂t
=
Wn+1
i −Wn

i

∆t
.

The finite volume scheme is then expressed by

Wn+1
i = Wn

i +
∆t

meas(Ci)

∑

j

meas(Γij)Φ(Wi,Wj). (13)

4.2 MUSCL thechnique

The scheme described above is a first order accurate scheme. This scheme is mono-
tone but has a poor accuracy due to the large amount of numerical dissipation. For
a higher order interpolation, gradient information needs to be used. The states are
supposed now to be in a set of linear piecewise functions in each control volume. At
the interface Γij , left and right states W−ij and W+

ij are defined by [EBV 99]:





W−ij = Wi +
1

2
∇Wi.

−−−→
GiGj ,

W+
ij = Wj −

1

2
∇Wj .

−−−→
GiGj

(14)

where Gi and Gj are respectively the barycenters of cells Ci, Cj . ∇Wi represents
the gradient at the cell Ci. This term can be evaluated by minimizing the quadratic
functional ( see [CVV 96], [EBV 99])

Ψi(x, y) =
∑

j∈K(i)

|Wi + (xj − xi)X + (yj − yi)Y −Wj |2 ,

where K(i) is the indices set of neighborhood triangles that have common edge
or vertex with the triangle Ci, (xi, yi) are the barycenter coordinates of cell Ci.
However, the obtained second order scheme is not monotone. To preserve the TVD
property [YEE 89], we use the MUSCL technique [YEE 89]. This procedure consists
in limiting the gradient of W on each element such that new extrema is not generated.
The limited gradients is calculated as follows:

∂limWi

∂x
=

1

2
[ min
j∈K(i)

sgn(
∂Wj

∂x
) + max

j∈K(i)
sgn(

∂Wj

∂x
)] min
j∈K(i)

∣∣∣∣
∂Wj

∂x

∣∣∣∣ .
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∂limWi

∂y
is evaluated in the same way. Then, interpolated left and right values are

obtained by replacing in (12) the gradients ∇Wi and ∇Wj respectively with ∇limWi

and ∇limWj . Afterward , Roe numerical flux is calculated by writing:

∫

Γij

IF (W )dσ = Φ(W−i ,W
+
j ,
−→nij)meas(Γij)

The second order finite volume scheme using MUSCL technique is then expressed
as follows

Wn+1
i = Wn

i +
∆t

meas(Ci)

∑

j

meas(Γij)Φ(W−i ,W
+
j ). (15)

4.3 The diffusive flux

When discretizing the diffusive terms , on has to evaluate
∫
Ci
Rx(W )dv and

∫
Ci
Ry(W )dv

where Rx(W ) =
∂

∂x

(
ν
∂qu
∂x

)
, and Ry(W ) =

∂

∂y

(
ν
∂qv
∂y

)
, using Gauss divergence for-

mula, we can write (for example):

∫

Ci

∂

∂x
(ν
∂qu
∂x

)dv =

∫

∂Ci

ν
∂qu
∂x

dσ =
∑

j

∫

Γij

ν
∂qu
∂x

dσ,

then one has to evaluate terms such as:

∫

Γij

a
′ ∂a

∂x
nx dσ and

∫

Γij

b
′ ∂b

∂y
ny dσ

where a (respectively b) is either qu or qv, a
′ (respectively b′) is ν.

We use a Green-Gauss type interpolation to construct the gradients at the in-
terface of the mesh. The gradient on each edge is approached by the Green theorem
and then a first order Gauss quadrature formula, to obtain requisite values at the
vertices P . The weak consistency of this scheme is proved under some assumption
on the weights of interpolation (see [CVV 99]).

We have exploited this idea to handle our much more difficult problem, and
discretize the diffusive part. We begin by writing

∫

Γij

(
a
′ ∂a

∂x

)
nx dσ = a

′
|Γij

∂a

∂x
|Γij

∫

Γij

nx dσ. (16)

The remaining problem is to evaluate a′ and
∂a

∂x
at the interface Γij between

two cells Ci and Cj .
One constructs the co-volume Cdec (called diamond shaped co-volume) centered

at the interface Γij and connecting the barycenters Gi and Gj of the triangles that
share this edge and the two end points N and S (see figure 2 ).

To discretize
∂a

∂x
|Γij , the divergence theorem is applied to the co-volume Cdec,

surrounding Γij , which gives the approximation:
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Figure 2: Diamond shaped co-volume

∂a

∂x
|Γij '

1

meas(Cdec)

∑

ε∈∂Cdec
a|ε

∫

ε
nxε dσ , (17)

ε represents one edge of co-volume Cdec and nxε is the axial component of the
outward unit normal to ε.

If we note ε = [N1, N2], one can also write:

∂a

∂x
|Γij '

1

meas(Cdec)

∑

ε∈∂Cdec

1

2
(aN1 + aN2)

∫

ε
nxε dσ (18)

Where aN1 and aN2 are respectively the values of the state a on the node N1 and
N2 of the edge ε.

The data at the centers Gi and Gj are known exactly while the data at the
vertices N and S must be determined by some interpolation procedure. For one
node P of the mesh, one utilizes a linear approximation v of a on the set of cells
which share the vertex P . One writes

aP =
∑

K∈V (P )

αK(P )aK .

Where V (P ) is the set of triangles K surrounding P , aK the state at the center
of triangle K and αK(P ) are the weights of the interpolation.

To ensure the weak consistency of the scheme described above, the weights αK(P )
are calculated by a least square approximation method (see [CVV 96], [EBV 99]).
The idea is to minimize the quadratic function

LP (v) =
∑

K∈V (P )

(aK − v(GK))2,

where v is a linear approximation of a on set of cells that share the vertex P ,

International Journal on Finite Volumes 10
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v(x, y) = β1 + β2(x− xP ) + β3(y − yP ),

that gives after some simple calculations and remarking that v(xP , yP ) = aP = β1,

αK(P ) =
1 + λx(xK − xP ) + λy(yK − yP )

nP + λxRx + λyRy
.

Where:

nP = card(V (P )), Rx =
∑

K∈V (P )

(xK − xP ) , Ry =
∑

K∈V (P )

(yK − yP ),

λx =
IxyRy − IyyRx

D
, λy =

IxyRx − IxxRy
D

,

Ixx =
∑

K∈V (P )

(xK−xP )2 Iyy =
∑

K∈V (P )

(yK−yP )2, Ixy =
∑

K∈V (P )

(xK−xP )(yK−yP )

and
D = IxxIyy − I2

xy.

Let’s denote by Φnv(W ) the flux coming from the convective part and Φv(W ) the
flux coming from the diffusive part. Since the source term is neglected, the global
scheme can be written as:

Wn+1
ij = Wn

ij −
∆t

meas(Ci)
Φnv(W

n
ij) +

∆t

meas(Ci)
Φv(W

n
ij) (19)

4.4 Convergence of the scheme

In [CVV 99], the authors showed the convergence of finite volume methods for the
problem of the diffusion-convection on completely unstructured meshes, assuming
the hypotheses of weak consistency and coercivity. In the case of the diamond-
path scheme, what corresponds to our case, it has been proven a general result
of consistency and a specific result of coercivity and so of convergence on regular
meshes of quadrangles, resulting from the initial triangular unstructured mesh, by
using diamond shaped co-volume technique (figure 2).

Typically, our calculations are begun with initial conditions corresponding to
uniform flow at the reference state. This can cause severe start-up problems for
flows around realistic geometries, where a large transient in the residuals can cause
negative elevation H, which can sometimes kill the calculation. To overcome this
problem, a CFL cutback procedure is used, which limits the maximum relative
change in H per time step [CWJ 94]. In our case the following CFL condition
relating to the convective part is used

CFL = ∆t.max(qi |λijk | /meas(Ci)) ≤ 1,

where qi is the number of triangles surrounding the vertex ai, λijk is the kth eigen-

value of A =
∂F (W )

∂x
nx +

∂G(W )

∂y
ny.
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4.5 Boundary conditions

Frontier of the domain

Inner cell

Fictitious cell

G i,2

G i,1

Figure 3: fictitious cells

The physical domain is surrounded by fictitious cells (figure 3). These cells are
constructed by taking the symmetry of the inner ones of the domain. The frontier
of the domain coincides with the frontiers which separate the fictitious cells and the
inner cells. So the south border of the domain is composed of the north frontiers
of the fictitious cells of the first line of the mesh. We consider the Dirichlet and
Neumann boundary conditions which are approximated by the following

Wi,boundary '
1

2
(Wi,1 +Wi,2) , (20)

(
∂W

∂n

)

i,boundary

' 1

dist(Gi,1, Gi,2)
(Wi,1 −Wi,2) , (21)

Wi,1 is the value of W on the fictitious cell (i, 1), Gi,. is the barycenter of cell

(i, .),
∂

∂n
is the outer normal derivative.

Through this simple formula we can find what we must impose as the value of
W on the fictitious cells depending on the boundary condition considered.

5 Numerical experiment: Ourika valley flood

Let us note that the characteristics data, which are provided below on the Ourika
channel, was extracted from a bibliographical information.

5.1 Geometrical data of Ourika Channel

The characteristics channel form (Surface, perimeter, mirror width, and slope of the
channel.) are determined from the data of transverse profiles of the river given on 15
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Inlet
Outlet

Figure 4: Geometry of the Ourika channel 200m ≤ x ≤ 3000m and −925m ≤ y ≤
625m

stations. These stations are separated on average by 200m. The channel considered
here is then 2800m long. The geometry of the channel is provided in Figure 4.
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5.2 Physical data of Ourika Channel

The physical data of the Ourika channel is provided by the measured flows during
the flood event. The hydrograph of flow measured at the time of the flood in the
station of Aghbalou is used as an upstream boundary condition. The instantaneous
measured flows are given in table 1 provided below and represented in figure 5.

17/08/95 Times Measured Flows (m3/s)
8 h 0,55
12 h 0,513
16 h 0,513
20 h 129,3

20 h 30 1030
21 h 70,45
22 h 35,33
23 h 34,27

18/08/95 8 h 10,31
9 h 10
10 h 9,4
11 h 8,82
12 h 8,26
13 h 7,98
14 h 7,72
16 h 7,2
18 h 6,7
20 h 6,45
22 h 6,22

Table 1: Measured flows at the inlet station (Aghbalou)

Figure 5: Flow hydrograph versus time

5.3 Boundary conditions at the inlet of the channel

At the upstream station, the channel has a strong slope (S0 = 0.05), the flow is then
considered supercritical. It becomes consequently necessary to apply in addition to
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the hydrograph Q(t) a second condition concerning the water elevation H(t) at its
inlet section. The method suggested in [FDL 88] allows to generate the hydrograph
of water elevations H(t) starting from Q(t) and of the Manning equation applied
to the inlet section. This technique was used in the one-dimensional hydrodynamic
flood model DAMBRK (see [FRH 85], [FDL 77] and [FDL 82]). For a given flow
discharge Q(t), the Manning equation is the implicit nonlinear equation for H(t)
expressed as follows:

Q = (φ/n)AsR
3/2S1/2 (22)

Where φ = 1 in S.I units, R is the hydraulic radius, S the channel slope at the
section, As the cross sectional area of flow and n the roughness coefficient. The
hydraulic radius is provided by R = As/P where P is the wetted perimeter. The
approximate trapezoidal form of the upstream section, in the Ourika case, allows
then to express As and P according to H(t) [BH 06]. The solution of equation (2)
using an iterative method (Newton method for example), gives the hydrograph of
H(t) and then the mean velocities by the relation V = Q/As. The obtained results
are gathered in table 2.

TIME FLOWS ELEVATIONS MEAN VELOCITIES
(t) Q(t) (m3/s) H(t) (m) V(t) (m/s)

17 /08/1995
8H 0.55 0.0149 0.2978
10H 0.513 0.0143 0.2895
16H 0.513 0.0143 0.2895
20H 129.3 0.3772 2.3303

20H30 1030 1.1714 4.4495
21H 70.45 0.2660 1.8919
22H 35.33 0.1779 1.4780
23H 34.27 0.1714 1.4927

18 /08/ 1995
8H 10.31 0.0860 0.9330
9H 10 0.0844 0.9228
10H 9.4 0.0814 0.9008
11H 8.82 0.0783 0.8800
12H 8.26 0.0753 0.8583
13H 7.98 0.0738 0.8467
14H 7.72 0.0724 0.8355
16H 7.2 0.0694 0.8141
18H 6.7 0.0665 0.7918
20H 6.45 0.0650 0.7804
22H 6.22 0.0636 0.7697

Table 2: Mean velocities on upstream section (m/s)
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6 Flood simulation

To simulate the wave propagation in the computational domain of figure 6 using
the proposed numerical model, the following data concerning the geometry of the
channel, initial and boundary conditions are taken into account.

• Unstructured mesh triangulation is of cell-centered type.

• Number of elements/nodes: 1102/609 (see figure 6).

• Length of the channel = 2800m.

• Initial time step : ∆t = 0.01s.

• CFL value = 0.7.

• H = 10m anywhere in the channel at t = 0.

• U = −0.29m/s and V = 0m/s at t = 0 (in agreement with the hydrograph of
velocities).

• At the inlet: mean velocities are given in table 2 as a boundary condition.

• At the solid boundaries: normal velocities are taken equal to zero.

• At the outlet: the Newmann condition. ∂nU = ∂nV = 0 is considered.

Figure 6: 2D grid of Ourika channel: 1102E/609N

7 Results and discussion

At the time 20h30, the velocity on the upstream section gone up 4.45m/s (see Table
2). To cross the considered channel of the valley (2800m) the flooding wave need
approximately 10.5mn.

Figures 7, 8, 9, 10, 11, 12 illustrates respectively the evolution of the water wave
propagation (iso-values of the velocity) in the channel at the following chosen stopped
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times of the simulation: t1 = 20h31, t2 = 20h32 ,t3 = 20h34, t4 = 20h36, t5 = 20h38
and t6 = 22h.

Figures 7a, b; 8a, b; 9a, b; 10a, b; 11a, b; 12a, b show respectively results of the water
depth profile for the same above stopped times of the simulation, the index a and b
correspond respectively to the position y = −239m, y = 127m. The water elevation
in the channel reaches approximately between 0 and 2 meters in comparison with
the initial surface level.

Figures 13a, b, c, d, e, f show the evolution of the water depth (free surface in
3D) for the same above stopped times of the simulation. We remark clearly the
evolution of the flooding wave. The amplitude of the elevation is important around
the times where the flood is occurred, for t = 22h, passing the period of the flood
the amplitude of the elevation decrease and becomes normal.

Finally, figure 14 illustrate the evolution of depth versus time in seconde for 4
points in x-direction of the channel along the y-direction. It confirm the remark
cited above.

8 Conclusion

In this work, we developed a robust solver for the 2D Saint Venant equations based
on Roe’s approximate Riemann solver with MUSCL technique for the convective
part and Green-Gauss type interpolation for the viscous part (unstructured mesh
case).

Also we presented our contribution to the modelling of the flood of Ourika valley
(Morocco) produced the summer of 1995 . The obtained results show the consistency
of the mathematical and numerical model. A comparison between the results of this
model with the experimental results was wished in this work to gauge (calibration)
the model. Unfortunately one does not have data for this fact.

A natural continuity of this work is to take a complete model, holding account
particularly source term, if required to take a model of cloture to hold in account
the effect of turbulence and pollutant transport model that would permit simulation
of many environmental problems occurring.
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figure 7 : Iso-values distri-
bution of depth t = 20H31

figure 7a : Depth profile
t = 20H31, y = −239m

figure 7b : Depth profile
t = 20H31, y = 127m

figure 8: Iso-values distri-
bution of depth t = 20H32

figure 8a : Depth profile
t = 20H32, y = −239m

figure 8b : Depth profile
t = 20H32, y = 127

figure 9 : Iso-values distri-
bution of depth t = 20H34

figure 9a : Depth profile
t = 20H34, y = −239m

figure 9b : Depth profile
t = 20H34, y = 127m

figure 10: Iso-values distri-
bution of depth t = 20h36

figure 10a: Depth profile
t = 20h36, y = −239m

figure 10b: Depth profile
t = 20h36, y = 127m

figure 11: Iso-values distri-
bution of depth t = 20h38

figure 11a: Depth profile
t = 20h38,y = −239m

figure 11b : Depth profile
t = 20h38h,y = 127m
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figure 12 : Iso-values distri-
bution of depth t = 22h

figure 12a : Depth profile
t = 22h,y = −239m

figure 12b : Depth profile
t = 22h,y = 127m

figure 13a : 3D-Depth
profile t = 20h31

figure 13b : 3D-Depth
profile t = 20h32

figure 13c : 3D-Depth
profile t = 20h34

figure 13d : 3D-Depth
profile t = 20h36

figure 13e : 3D-Depth
profile t = 20h38

figure 13f : 3D-Depth
profile t = 22h

figure 14: Depth versus time (seconde) for 4 points of the channel along the line
(y ∼ 13.7), −. p1 : (x = 2458.8m), −? p2: (x = 1851m), −+ p3: (x = 1084.7m),
−◦ p4: (x = 772m)
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