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Abstract

In this paper, we propose a new very simple numerical method for solving
liquid-gas compressible flows. Such flows are difficult to simulate because
classic conservative finite volume schemes generate pressure oscillations
at the liquid-gas interface. We extend to several dimensions the random
choice scheme that we have constructed in [2]. The extension is performed
through Strang dimensional splitting. The resulting scheme exhibits in-
teresting conservation and stability properties. For achieving high perfor-
mance, the scheme is tested on recent multi-core processors and GPUs,
using the OpenCL environment.

Key words : OpenCL, GPU, two-fluid compressible flow, Lagrange-
projection, Glimm, Strang splitting

1 Introduction

Compressible two-fluid flows are difficult to numerically simulate. Indeed, as first
discovered in [1] and [24], classic conservative finite volume schemes do not preserve
the velocity and pressure equilibrium at the two-fluid interface. This leads to oscil-
lations, lack of precision and even, in some liquid-gas simulations, to the crash of the
computation.

Several cures have been proposed to obtain better schemes. Among many works,
we can cite [1, 24]. The resulting schemes are generally not conservative. Based on
previous works of Chalons and Goatin [11] and Chalons and Coquel [9, 10], we have
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proposed in [2] a Lagrange and remap scheme for solving compressible liquid-gas
flows. The remap step of the scheme is based on the Glimm random choice method
at the interface. In [2], we have tested the random scheme on one-dimensional test
cases. The random scheme presents interesting properties: (statistical) conservation,
better precision, it preserves the pressure and velocity equilibrium at the interface,
it allows to perform computations that are not feasible with other classic schemes.

In this paper, we extend the method to two-dimensional equations, thanks to
Strang dimensional splitting. In [14], Strang dimensional splitting is applied for
solving the gas dynamics equations with the original Glimm scheme. It appears that,
because of non-linear effects, the resulting scheme of [14] does not converge towards
the right solution. In our method, we observe a much better precision, because the
Glimm approach is applied only at the two-fluid interface, which corresponds to a
linearly degenerated field.

In order to gain efficiency, we also replace the exact Riemann solver of [2] by an
approximate Riemann solver constructed from an extended relaxation system. We
adapt ideas presented in [8] in order to construct a simple and robust Riemann solver
that handles vacuum.

The simplicity of the whole approach allows also an easy implementation of the
method on recent multi-core processors and Graphic Processing Units (GPU). For
this, we use the OpenCL programming environment.

We then perform several numerical experiments for evaluating the advantages
and drawbacks of the random scheme.

2 Mathematical model

In this paper, we are interested in the numerical resolution of the following system
of partial differential equations, modeling a liquid-gas compressible flow

∂tW + ∂xF (W ) + ∂yG(W ) = 0, (1)

where
W = (ρ, ρu, ρv, ρE, ρϕ)T ,

and
F (W ) = (ρu, ρu2 + p, ρuv, (ρE + p)u, ρuϕ)T ,

G(W ) = (ρv, ρuv, ρv2 + p, (ρE + p)v, ρvϕ)T .

The unknowns are the density ρ, the two components of the velocity u, v, the internal
energy e and the mass fraction of gas ϕ. The unknowns depend on the space variables
x, y and on the time variable t. The total energy E is the sum of the internal energy
and the kinetic energy

E = e+
u2 + v2

2
.

The pressure p of the two-fluid medium is a function of the other thermodynamical
parameters

p = p(ρ, e, ϕ).
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In this paper, we consider the stiffened gas pressure law

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe− γ(ϕ)p∞(ϕ), (2)

where γ and p∞ are given functions of the mass fraction ϕ, and

γ(ϕ) > 1.

At the initial time, the mass fraction ϕ(x, y, 0) = 1 if the point (x, y) is in the gas
region and ϕ(x, y, 0) = 0 if the point (x, y) is in the liquid region. The mass fraction
is also solution of the transport equation

∂tϕ+ u∂xϕ+ v∂yϕ = 0,

which implies that for any time t > 0, ϕ(x, y, t) can take only the two values 0 or 1.
However, classic numerical schemes generally produce an artificial diffusion of

the mass fraction, and in the numerical approximation we may observe 1 > ϕ > 0.
We have thus to interpolate the pressure law parameters in the mixture. In [31], for
instance, the interpolation is defined by

1

γ(ϕ)− 1
= ϕ

1

γ2 − 1
+ (1− ϕ)

1

γ1 − 1
, (3)

γ(ϕ)p∞(ϕ)

γ(ϕ)− 1
= ϕ

γ2p∞,2
γ2 − 1

+ (1− ϕ)
γ1p∞,1
γ1 − 1

, (4)

where (γ1, p∞,1) and (γ2, p∞,2) corresponds respectively to the pressure law param-
eters of the pure liquid phase ϕ = 0 and the pure gas phase ϕ = 1.

If ν is a unit vector in R2, we define the flux F of system (1)

F(W, ν) :=

(
F (W )
G(W )

)
· ν,

and the phase space

Ω =
{
W = (ρ, ρu, ρv, ρE, ρϕ) ∈ R5, ρ > 0, ϕ ∈ [0; 1],

p(ρ,E − u2 + v2

2
, ϕ) + p∞(ϕ) > 0

}
.

If W ∈ Ω, we can define the speed of sound

c(ρ, e, ϕ) : =

√
γ(ϕ)

p(ρ, e, ϕ) + p∞(ϕ)

ρ
. (5)

For all state W in the phase space Ω and for all unit vector ν the matrix

F ′(W, ν) =

(
F
′
(W )

G
′
(W )

)
· ν

is diagonalizable with the following eigenvalues

λ1 =

(
u
v

)
· ν − c, λ2 = λ3 = λ4 =

(
u
v

)
· ν, λ5 =

(
u
v

)
· ν + c (6)

and the system (1) is thus hyperbolic (see [35, 20]).
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Remark 1 The hyperbolicity set Ω is generally not convex when p∞,1 6= p∞,2. How-
ever, for a fixed value of the mass fraction ϕ0 ∈ [0; 1], the following set is always
convex:

Ω{ϕ0} :=
{
W = (ρ, ρu, ρv, ρE, ρϕ) ∈ R

5
, ρ > 0, ϕ = ϕ0,

p

(
ρ,E − u2 + v2

2
, ϕ

)
+ p∞(ϕ) > 0

}
.

Remark 2 For any state in the domain Ω, the corresponding internal energy e > 0.
However negative pressures are possible. This can be physically justified (see [18],
[4]).

The solution of (1)-(2) is generally not unique. In order to recover uniqueness, we
also have to apply an entropy growth criterion, which we do not detail here (see
[35, 20]).

3 Random choice numerical method

3.1 Directional splitting

We consider a increasing sequence of times tn, n ∈ N∗ and an approximationWn(x, y)
of W (x, y, tn). For constructing Wn+1 we use the Strang dimensional splitting strat-
egy [33]. It amounts to solving, for a time step ∆t, the following Cauchy problem

∂tW + ∂xF (W ) = 0, (7)

W (x, y, 0) = Wn(x, y). (8)

We obtain in this way a solution W (x, y,∆t) at time ∆t. Then we solve

∂tV + ∂yG(V ) = 0, (9)

with the initial condition

V (x, y, 0) = W (x, y,∆t),

and we set
Wn+1(x, y) = V (x, y,∆t).

This approximation is consistent with the initial problem (1) at order one in ∆t.
Simple modifications that allow to reach second order accuracy are also available
[33]. In addition, in our application, thanks to the rotational invariance of the Euler
equations, the equations (7) and (9) are equivalent if we simply exchange the space
variables x and y and the velocity components u and v. It is thus enough to construct
a scheme for solving the one-dimensional Cauchy problem

∂tW + ∂xF (W ) = 0, (10)

W (x, 0) = W0(x). (11)

We use the scheme developed in [2], which we recall now.
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3.2 Random choice approach

In this section we consider the numerical scheme for solving (7) with (x, t) in [a, b]×
R+. We consider a sequence of times tn, n ∈ N such that the time step ∆tn :=
tn+1 − tn > 0. We consider also a space step h = (b − a)/N , where N is a positive
integer. We define the cell centers by xi = a+ (i− 1/2)h, i = 0 · · ·N + 1. The cells
i = 0 and i = N + 1 are used for applying boundary conditions. The cell Ci is the
interval ]xi−1/2, xi+1/2[ where xi±1/2 = xi ± h/2. We look for an approximation of
W (xi, tn)

Wn
i 'W (xi, tn).

Our method enters the family of the so-called Lagrange-projection schemes [20]. Each
time step of the scheme is made of two stages. In the first stage, the equations are
solved on a moving grid. The first stage is called the Arbitrary Lagrangian Eulerian
(or ALE) stage. It allows to obtain a new approximation, noted Wn+1,−

i of W at
time tn+1 on the moved grid. The second stage, called the projection stage, allows
to return to the initial grid, i.e. to compute Wn+1

i from Wn+1,−
i .

3.2.1 Arbitrary Lagrangian Eulerian (ALE) stage

In the first stage, we allow the cell boundary xi+1/2 to move at the velocity ξni+1/2.
This velocity will be defined below. At the end of the first stage, the cell boundary
is

xn+1,−
i+1/2 = xi+1/2 + ∆tnξ

n
i+1/2.

Integrating the conservation law (7) on the space-time trapezoid{
(x, t), xi−1/2 + (t− tn)ξni−1/2 < x < x+ (t− tn)ξni+1/2, tn < t < tn+1

}
, (12)

we obtain the following finite volume approximation

hn+1,−
i Wn+1,−

i − hWn
i + ∆tn

(
FL(Wn

i ,W
n
i+1, ξ

n
i+1/2)− FR(Wn

i−1,W
n
i , ξ

n
i−1/2)

)
= 0.

(13)
The new size of cell i is given by

hn+1,−
i = xn+1,−

i+1/2 − x
n+1,−
i-1/2 = h+ ∆tn(ξni+1/2 − ξ

n
i−1/2). (14)

The Arbitrary Lagrangian Eulerian (ALE) numerical fluxes are of the form

FL(WL,WR, ξ) := F (WL)− ξWL −
∫ ξ

−∞
(R(WL,WR, θ)−WL) dθ, (15)

FR(WL,WR, ξ) := F (WR)− ξWR +

∫ +∞

ξ
(R(WL,WR, θ)−WR) dθ, (16)

where R(WL,WR, θ) is obtained by the resolution of a Riemann problem. In practice,
R can be an exact or approximate Riemann solver [21] and it satisfies the conservation
identity

FL(WL,WR, ξ) = FR(WL,WR, ξ). (17)

We first describe the method for the exact Riemann solver. A more efficient approx-
imate Riemann solver, based on a relaxation approach, is also described in Section
4.
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3.2.2 Choice of the interface velocity

Several choices are possible for the interface velocity ξni+1/2. The standard Eulerian
choice is

ξni+1/2 = 0, (18)

and the standard Lagrangian scheme consists in choosing

ξni+1/2 = uni+1/2, (19)

where uni+1/2 is the contact discontinuity velocity in the resolution of the Riemann
problem R(Wn

i ,W
n
i+1, x/t).

Another mixed choice is to take ξni+1/2 = uni+1/2 only at the liquid-gas interface
and ξni+1/2 = 0 elsewhere. We explain in Section 7.1.3 why this choice is interesting.
The cell boundary i + 1/2 corresponds to the liquid-gas interface if the following
condition is satisfied

(ϕni − 1/2)(ϕni+1 − 1/2) < 0,

because ϕ = 0 in the liquid and ϕ = 1 in the gas. In this case, the interface velocity
is given by

ξni+1/2 =

{
uni+1/2 if (ϕni − 1/2)(ϕni+1 − 1/2) < 0,

0 else.
(20)

In the sequel we will denote by “Euler scheme” the scheme corresponding to choice
(18), the “Lagrange scheme” the scheme corresponding to choice (19) and by the
“ALE scheme” the scheme corresponding to choice (20).

3.2.3 Projection stage

The second stage of the time step is needed for returning to the initial mesh. We have
to average on the cells Ci of the initial mesh the intermediate solutionWn+1,−

i , which
is defined on the moved cells Cn+1,−

i =]xn+1,−
i−1/2 , x

n+1,−
i+1/2 [. We consider an averaging

process that depends on the location of the cell with respect to the material interface.
The averaging is thus different if the cell touches the liquid-gas interface or not. More
precisely, if the cell is not at the interface, i.e. if

(ϕni − 1/2)(ϕni+1 − 1/2) > 0 and (ϕni−1-1/2)(ϕ
n
i -1/2)>0,

then we perform a standard averaging

Wn+1
i = Wn+1,−

i − ∆tn
h

(max(ξn
i− 1

2

, 0)(Wn+1,−
i −Wn+1,−

i−1 ) (21)

+ min(ξn
i+ 1

2

, 0)(Wn+1,−
i+1 −Wn+1,−

i )).

Remark 3 If the interface velocities ξni±1/2 = 0, in this case, we simply obtain

Wn+1
i = Wn+1,−

i ,

and the scheme reduces to the classic Godunov scheme.
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On the other hand, if the cell touches the interface

(ϕni − 1/2)(ϕni+1 − 1/2) < 0 or (ϕni−1-1/2)(ϕ
n
i -1/2)<0,

we then consider a random sequence ωn ∈ [0, 1[ and we perform a random averaging

Wn+1
i =


Wn+1,−
i−1 , if ωn <

ξn
i−1/2

∆tn

h ,

Wn+1,−
i , if

ξn
i−1/2

∆tn

h ≤ ωn ≤ 1 +
ξn
i+1/2

∆tn

h ,

Wn+1,−
i+1 , if ωn > 1 +

ξn
i+1/2

∆tn

h .

(22)

A good choice for the random sequence ωn is the (k1, k2) van der Corput sequence,
computed by the following C algorithm

float corput(int n,int k1,int k2){
float corput=0;
float s=1;
while(n>0){

s/=k1;
corput+=(k2*n%k1)%k1*s;
n/=k1;

}
return corput;

}

In this algorithm, k1 and k2 are two relatively prime numbers and k1 > k2 > 0.
For more details, we refer to [35]. In practice, we consider the (5, 3) van der Corput
sequence.

Remark 4 It is not possible to perform the random averaging in all the cells, because
the resulting scheme is generally not BV stable (see [2] and also a numerical example
in Section 7.1.3).

4 Relaxation solver

4.1 Introduction

For computing the ALE numerical fluxes (15) and (16), we have to provide a Riemann
solver R(WL,WR, ξ). If R is the exact Riemann solver, the finite volume scheme (13)
is the Godunov scheme (see[35]) and we have

FL(WL,WR, ξ) = FR(WL,WR, ξ)

= F (R(WL,WR, ξ))− ξR(WL,WR, ξ).

We recall that R(WL,WR, x/t) = W (x, t) is the exact entropy solution of the Rie-
mann problem‘

∂tW + ∂xF (W ) = 0, (23)

W (x, 0) =

{
WL if x < 0,
WR if x > 0.

(24)
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The exact solution can be computed (see [4]) but it requires solving a nonlinear
equation using an iterative procedure. Numerically, this computation is perfectly
feasible. However, one of our objectives is to implement our method on GPU. Because
it involves many different branch tests the exact Riemann solver is not the most
efficient on such computer architecture.

It is thus indicated to replace the exact Riemann solver by an approximated one.
However we must construct it carefully. Indeed, other classic solvers, such as the
Roe or VFRoe Riemann solvers [19, 29], even with an entropy correction, lead to
crashes in the numerical simulations. The crashes occur because at the liquid-gas
interface the internal energy becomes negative. It is necessary to construct a solver
that preserves the energy positivity.

For constructing a positive flux, we follow the relaxation approach, which is
explained now in many papers [23, 15, 7, 5]. We follow here the presentation of
[13, 7, 8]. The principle of the relaxation solver is to use a larger system of PDE’s
(called the relaxation system), which extends (7). The relaxation system is chosen in
such a way that the exact solution of the Riemann problem can be easily computed.
In addition, the structure of the relaxed Riemann solver allows proving in an easier
way the positivity of the approximate Riemann solver.

Definition 4.1 A relaxation system for (7) is a system of conservation laws in higher
dimension q > 5

∂tW̃ + ∂xF̃ (W̃ ) = 0, (25)

where W̃ (x, t) ∈ Rq and F̃ (W̃ ) ∈ Rq. The link between (7) and (25) is made by the
assumption that we have a linear operator

L : Rq → R5

and a non-linear operator
M : R5 → Rq

such that for any W ∈ R5

L (M(W )) = W,

L
(
F̃ (M(W ))

)
= F (W ).

The main idea is that W = L
(
W̃
)
should be an approximate solution to (7) when

W̃ solves (25). The approximation is valid for a short time, corresponding to the
time step of the scheme.

Remark 5 As it was introduced in [7, 8], we have to mention that we do not consider
here right-hand sides in (25).

4.2 Construction of the relaxation system

A way to introduce the relaxation system is to start with a smooth solution of the
system (7) and to derive an equation on the sound speed c(ρ, e, ϕ) and the pressure

International Journal on Finite Volumes 8
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p(ρ, e, ϕ) in order to delete the non-linearity of the system. Developing the energy
equation of system (7) gives

∂t(ρp) + ∂x(ρup) + ρ2c2∂xu = 0.

In order to remove the non-linearity of this equation we replace p(ρ, e, ϕ) by a new
variable π and (ρc)2 by a new variable a2, we get the following equation

∂t(ρπ) + ∂x(ρuπ) + a2∂xu = 0.

We also impose that a is transported at the velocity of the fluid

∂ta+ u∂xa = 0.

Finally, the relaxation system is given by

∂tρ+ ∂x(ρu) = 0, (26)
∂t(ρu) + ∂x(ρu2 + π) = 0,

∂t(ρv) + ∂x(ρuv) = 0,

∂t(ρE) + ∂x((ρE + π)u) = 0,

∂t(ρϕ) + ∂x(ρuϕ) = 0,

∂t(
ρπ

a2
) + ∂x(

ρπu

a2
+ u) = 0,

∂t(ρa) + ∂x(ρua) = 0, (27)

with

E = e+
u2 + v2

2
.

We can write the system (26)-(27) in the conservative form

∂tW̃ + ∂xF̃ (W̃ ) = 0, (28)

where
W̃ = (ρ, ρu, ρv, ρE, ρϕ,

ρπ

a2
, ρa)T

and
F̃ (W̃ ) = (ρu, ρu2 + π, ρuv, (ρE + π)u, ρuϕ,

ρπu

a2
+ u, ρua)T .

The system (28) is a relaxation system for (7) with

L : R7 → R5

W̃ 7→
(
W̃1, W̃2, W̃3, W̃4, W̃5

)
and

M : R5 → R7

(ρ, ρu, ρv, ρE, ρϕ) 7→
(
ρ, ρu, ρv, ρE, ρϕ,

p

ρc2
, ρ2c

)
.

International Journal on Finite Volumes 9
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0

Figure 1: Structure of the solution of the relaxation system (28).

Let us note that in the relaxation system we have 7 unknowns (ρ, u, v, E, ϕ, π, a)
for our initial system of 5 unknowns (ρ, u, v, E, ϕ). The additional unknown π rep-
resents a relaxed pressure and a is a convected pressure law parameter. One has to
take care that in (28) ρ, E, π and a are understood as independent variables.

The system (28) is hyperbolic over the following phase space

Ω̃ : =
{
W̃ = (ρ, ρu, ρv, ρE, ρϕ,

ρπ

a2
, ρa) ∈ R7, a > 0, ρ > 0

}
.

with the following increasingly ordered eigenvalues :

λ1 = u− a

ρ
, λ2 = ... = λ6 = u, λ7 = u+

a

ρ
. (29)

From the works of Liu [27], Chen, Levermore and Liu [13], it is known that
for avoiding instabilities, the subcharacteristic condition has to be satisfied: the
eigenvalues (29) of the relaxation system (28) and those of the original system (6)
must be properly interlaced. In the present relaxation setting (28), these stability
conditions are satisfied if the free coefficient a > 0, is larger than the exact Lagrangian
sound speed

a > ρc(ρ, e, ϕ). (30)

4.3 Resolution of the relaxation system

Before giving the expression of the interface flux for the relaxation system (28) and
then the flux for the initial system (7), we describe the exact resolution of the relaxed
Riemann problem

∂tW̃ + ∂xF̃ (W̃ ) = 0,

W̃ (x, 0) =

{
W̃L if x < 0,

W̃R if x > 0.

Thanks to the additional relaxed variables, the eigenvalues of the relaxation sys-
tem (28) are linearly degenerated. Thus we can compute easily the exact solution
to the relaxed Riemann problem. It has three wave speeds σ1 = u − a

ρ , σ2 = u,
σ3 = u+ a

ρ , with two intermediate states that we shall index by ·1 and ·2 (see Figure

International Journal on Finite Volumes 10
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1). We notice that because a is simply convected at the velocity u, we have a1 = aL
and a2 = aR. Then, according to the expressions of the Riemann invariants for
the first and third wave and the fact that u and π are two independent Riemann
invariants for the central wave, the intermediate states are obtained by

u1 = u2, π1 = π2, (31)
vL = v1, v2 = vR,

ϕL = ϕ1, ϕ2 = ϕR,

(π + ua) L = (π + ua) 1, (π − ua) 2 = (π − ua)R,(
1

ρ
+
π

a2

)
L =

(
1

ρ
+
π

a2

)
1,

(
1

ρ
+
π

a2

)
2 =

(
1

ρ
+
π

a2

)
R,(

e− π2

2a2

)
L =

(
e− π2

2a2

)
1,

(
e− π2

2a2

)
2 =

(
e− π2

2a2

)
R. (32)

The wave speeds are given by

σ1 = uL −
aL
ρL
, σ2 = u1 = u2, σ3 = uR +

aR
ρR
.

Then the exact solution of the relaxation system (28) is given by

R̃(W̃L, W̃R, ξ) =


W̃L, if ξ < σ1

W̃1, if σ1 ≤ ξ < σ2

W̃2, if σ2 ≤ ξ < σ3

W̃R, if σ3 ≤ ξ

(33)

where the states

W̃1 = (ρ1, ρ1u1, ρ1v1, ρ1E1, ρ1ϕ1,
ρ1π1

a2
1

, ρ1a1)T

and
W̃2 = (ρ2, ρ2u2, ρ2v2, ρ2E2, ρ2ϕ2,

ρ2π2

a2
2

, ρ2a2)T

are defined by
1

ρ1
=

1

ρL
+
aR(uR − uL) + πL − πR

aL(aL + aR)
, (34)

1

ρ2
=

1

ρR
+
aL(uR − uL) + πR − πL

aR(aL + aR)
, (35)

u1 = u2 =
πL − πR + aLuL + aRuR

aR + aL
, (36)

v1 = vL, v2 = vR,

π1 = π2 =
aLπR + aRπL + aLaR(uL − uR)

aL + aR
, (37)

e1 = eL −
π2
L − π2

1

2a2
L

,

e2 = eR −
π2
R − π2

2

2a2
R

,

ϕ1 = ϕL, ϕ2 = ϕR. (38)
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Remark 6 The positivity of ρ1 and ρ2 is not guaranteed from (34)-(35). This is a
requirement that constraints aL and aR to be large enough. Another requirement is
that σ1 < σ2 < σ3, but indeed this property follows from the previous one, since one
has σ2 − σ1 = aL

ρ1
and σ3 − σ2 = aR

ρ2
.

4.4 Expression of the numerical fluxes

As we have explained in section 3.2, in the first stage of the scheme, we use an ALE
exact or approximated Riemann solver. It is thus necessary that the numerical flux
depends on an additional velocity variable ξ. In practice, the additional velocity ξ
is set to zero or to the contact discontinuity velocity. For the computations, it is
convenient to introduce the left and right numerical fluxes for the relaxation system
with the formula

F̃L(W̃L, W̃R, ξ) := F̃ (W̃L)− ξW̃L −
∫ ξ

−∞

(
R̃(W̃L, W̃R, θ)− W̃L

)
dθ, (39)

F̃R(W̃L, W̃R, ξ) := F̃ (W̃R)− ξW̃R +

∫ +∞

ξ

(
R̃(W̃L, W̃R, θ)− W̃R

)
dθ. (40)

From the numerical flux F̃L,R(W̃L, W̃R, ξ) of the relaxation system (25) we then
obtain the numerical flux for our original system (7) by

FL,R(WL,WR, ξ) = L
(
F̃L,R (M(WL),M(WR), ξ)

)
.

We also impose the conservation property (17) of the relaxation numerical flux [21]

F̃L(W̃L, W̃R, ξ) = F̃R(W̃L, W̃R, ξ).

This gives us

F̃ (W̃R)− F̃ (W̃L) = σ1(W̃1 − W̃L) + σ2(W̃2 − W̃1) + σ3(W̃R − W̃2). (41)

Then we can omit the indexes ·L,R and write the numerical flux under the form

F̃ (W̃L, W̃R, ξ) =


F̃ (W̃L)− ξW̃L if ξ < σ1,

F̃1 − ξW̃1 if σ1 ≤ ξ < σ2,

F̃2 − ξW̃2 if σ2 ≤ ξ < σ3,

F̃ (W̃R)− ξW̃R if σ3 ≤ ξ.

(42)

where F̃1 and F̃2 are defined by

F̃1 := F̃ (W̃L) + σ1(W̃1 − W̃L), (43)

F̃2 := F̃ (W̃R) + σ3(W̃2 − W̃R), (44)

= F̃1 + σ2(W̃2 − W̃1). (45)
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In order to determine explicitly the flux F̃ (W̃L, W̃R, ξ), we have to specify F̃1 and
F̃2. As σ1 = uL − aL

ρL
= u1 − aL

ρ1
, the relation (43) gives

F̃1 − u1W̃1 = F̃ (W̃L)− uLW̃L + aL

(
1

ρL
W̃L −

1

ρ1
W̃1

)
,

= (0, πL, 0, πLuL, 0, uL, 0)T + aL(0, uL − u1, 0, EL − E1, 0,
πL − π1

a2
L

, 0)T ,

= (0, πL + aL(uL − u1), 0, πLuL + aL(EL − E1), 0, uL +
πL − π1

aL
, 0)T ,

with relations (31)-(32), we obtain

F̃1 − u1W̃1 = (0, π1, 0, π1u1, 0, u1, 0)T ,

⇒ F̃1 = F̃ (W̃1).

From (45) and as u1 = u2 and π1 = π2, we can write F̃2 as

F̃2 = u2W̃2 + (0, π2, 0, π2u2, 0, u2, 0)T ,

⇒ F̃2 = F̃ (W̃2).

Remark 7 It is remarkable that the intermediate numerical fluxes, which depends
in the general cases on the left and right states, can be expressed as the flux of
the corresponding intermediate state of the relaxed system (i.e. F̃ (W̃L, W̃R, ξ) =

F̃ (W̃∗)− ξW̃∗ for some W̃∗ ∈ R7).

In order to go back to the original system (7), we use in the formula (13) the interface
flux given by

F (WL,WR, ξ) = L
(
F̃ (M(WL),M(WR), ξ)

)
,

= L
(
F̃
(
R̃ (M(WL),M(WR), ξ)

)
− ξR̃ (M(WL),M(WR), ξ)

)
,

where R̃ (M(WL),M(WR), ξ) is given by (33) and F̃ is defined in (42).

Remark 8 Generally π1 6= p(ρ1, e1, ϕ1) and π2 6= p(ρ2, e2, ϕ2) and it is not possible
to write F (WL,WR, ξ) = F (W∗)− ξW∗ for some W∗ ∈ R5.

5 Properties of the scheme

In this section, we list some properties of the scheme. As we consider dimensional
splitting (see Section 3.1), we only give the properties in the one-dimensional case.

Proposition 5.1 If we assume that WL ∈ Ω{ϕL}, WR ∈ Ω{ϕR} and that aL and aR
satisfy the relations

if pR − pL ≥ 0,


aL
ρL

= cL + αmax
(
pR−pL
ρRcR

+ uL − uR, 0
)
,

aR
ρR

= cR + αmax
(
pL−pR
aL

+ uL − uR, 0
)
,

(46)

if pR − pL ≤ 0,


aR
ρR

= cR + αmax
(
pL−pR
ρLcL

+ uL − uR, 0
)
,

aL
ρL

= cL + αmax
(
pR−pL
aR

+ uL − uR, 0
)
,

(47)
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where cL,R is given by
cL,R = c (ρL,R, eL,R, ϕL,R)

(see the definition of c in (5)) and

α = max

(
γ(ϕL) + 1

2
,
γ(ϕR) + 1

2

)
,

then we obtain the following stability properties

σ1 = uL −
aL
ρL

< σ2 = u1 = u2 < σ3 = uR +
aR
ρR
,

L
(
W̃1

)
∈ Ω{ϕL},

L
(
W̃2

)
∈ Ω{ϕR}.

Proof We adapt the method described in [8]. Using expressions (34) and (35), it is
easy to prove, under assumptions (46)-(47), that{

ρ1 > 0,

ρ2 > 0.

Proving that e1 − p∞(ϕL)
ρ1

> 0 and e2 − p∞(ϕR)
ρ2

> 0 requires more subtle arguments
based on entropy inequalities satisfied by general relaxation solvers. See [8]. �

Remark 9 If aL and aR are defined with (46)-(47), the subcharacteristic condition
(30) is obviously satisfied. With this choice for aL and aR, the solver also satisfies a
discrete entropy inequality (see [7, 8]). In addition, the two relations (46)-(47) allow

ρL → 0 or ρR → 0.

Thus, the solver can handle vacuum.

Proposition 5.2 The following stability property holds for the Lagrangian scheme
(19) or the ALE scheme (20):

If for some n, i

• Wn
i ∈ Ω{ϕn

i },

• (ani±1/2)L,R satisfy conditions (46)-(47),

• ∆tn satisfies the 1/2 CFL condition
min

(
ξni+1/2, u

n
i −

(an
i+1/2

)L

ρni

)
∆tn >

−h
2 ,

max

(
ξni−1/2, u

n
i +

(an
i−1/2

)R

ρni

)
∆tn <

h
2 ,

(48)

then
Wn+1,−
i ∈ Ω{ϕn

i }.
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Proof We have

hn+1,−
i Wn+1,−

i = hWn
i −∆tn

(
FL(Wn

i ,W
n
i+1, ξ

n
i+1/2)− FR(Wn

i−1,W
n
i , ξ

n
i−1/2)

)
,

where FL,R(WL,WR, ξ) = L
(
F̃L,R (M(WL),M(WR), ξ)

)
. As L is a linear operator,

we can write
Wn+1,−
i = L

(
W̃n+1,−
i

)
where W̃n+1,−

i is defined by

hn+1,−
i W̃n+1,−

i = hM(Wn
i )−∆tn

(
F̃L

(
M(Wn

i ),M(Wn
i+1), ξni+1/2

)
−

F̃R

(
M(Wn

i−1),M(Wn
i ), ξni−1/2

))
,

Using expression (39) for

F̃L

(
M(Wn

i ),M(Wn
i+1), ξni+1/2

)
and (40) for

F̃R

(
M(Wn

i−1),M(Wn
i ), ξni−1/2

)
we obtain

W̃n+1,−
i = 1

hn+1,−
i

∫ xi+1/2+ξn
i+1/2

∆tn

xi+1/2−h/2
R̃
(
M(Wn

i ),M(Wn
i+1),

x−xi+1/2

∆tn

)
dx

+ 1

hn+1,−
i

∫ xi−1/2+h/2

xi−1/2+ξn
i−1/2

∆tn
R̃
(
M(Wn

i−1),M(Wn
i ),

x−xi−1/2

∆tn

)
dx. (49)

where xi+1/2 − h/2 = xi−1/2 + h/2. Under the CFL condition (48), Proposition 5.1
gives

∀x ∈ [xi+1/2 − h/2;xi+1/2 + ξni+1/2∆tn],

L

(
R̃

(
M(Wn

i ),M(Wn
i+1),

x− xi+1/2

∆tn

))
∈ Ω{ϕn

i },

∀x ∈ [xi−1/2 + ξni−1/2∆tn;xi−1/2 + h/2],

L

(
R̃

(
M(Wn

i−1),M(Wn
i ),

x− xi−1/2

∆tn

))
∈ Ω{ϕn

i }.

The Lagrangian or ALE choice of ξni±1/2 ensures that the two vectors are in Ω{ϕn
i }.

Finally W̃n+1,−
i in (49) is a convex combination of vectors in Ω{ϕn

i }. Because
Ω{ϕn

i } is convex, we obtain

L
(
W̃n+1,−
i

)
∈ Ω{ϕn

i }.

�

Remark 10 Proposition 5.1 would not hold if we had chosen the Eulerian flux. In-
deed, in this case, W̃n+1,−

i is a convex combination of vectors in Ω, which is generally
not convex.
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Proposition 5.3 If at the initial time

∀i, W 0
i ∈ Ω{0} ∪ Ω{1},

and if at any time tn,

• ∀i, (ani±1/2)L,R satisfies condition (46)-(47),

• ∆tn satisfies the 1/2 CFL condition

∆tn < min
i

 h

2 max

(
| uni −

(an
i+1/2

)L

ρni
|, | uni +

(an
i−1/2

)R

ρni
|
)
 , (50)

• we consider the Lagrangian scheme (19) or the ALE scheme (20),

• we apply the standard averaging (21) in the pure phase and the random aver-
aging (22) at the interface,

• then we obtain
∀n ≥ 1, ∀i, Wn

i ∈ Ω{0} ∪ Ω{1}.

Remark 11 In conclusion, our scheme preserves the non-negativity of ρ, the positivity
of e, and preserves a sharp interface.

Proof The property is satisfied at the initial time.
Assume that at any time tn, we have

∀i, Wn
i ∈ Ω{0} ∪ Ω{1}.

Because we consider the ALE or the Lagrangian scheme and because the Eulerian
CFL condition (50) is satisfied, the ALE CFL condition (48) is also satisfied. Then,
Proposition 5.2 gives

∀i, Wn+1,−
i ∈ Ω{ϕn

i },

with ϕni ∈ {0; 1}. We just have to prove the stability after projection.
If

(ϕni − 1/2)(ϕni+1 − 1/2) > 0 and (ϕni−1-1/2)(ϕ
n
i -1/2)>0,

(then ϕni−1 = ϕni = ϕni+1), we perform the standard averaging,

Wn+1
i = Wn+1,−

i − ∆tn
h

(max(ξn
i− 1

2

, 0)(Wn+1,−
i −Wn+1,−

i−1 )

+ min(ξn
i+ 1

2

, 0)(Wn+1,−
i+1 −Wn+1,−

i )).

It is a convex combination of Wn+1,−
i−1 , Wn+1,−

i and Wn+1,−
i+1 , which are all in the

convex domain Ω{ϕn
i }. We obtain

Wn+1
i ∈ Ω{ϕn

i }.
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Else, on cells that touches the interface, we perform the Glimm projection (22).
Then

Wn+1
i ∈


Ω{ϕn

i−1}, if ωn <
ξn
i−1/2

∆tn

h ,

Ω{ϕn
i }, if

ξn
i−1/2

∆tn

h ≤ ωn ≤ 1 +
ξn
i+1/2

∆tn

h ,

Ω{ϕn
i+1}, if ωn > 1 +

ξn
i+1/2

∆tn

h ,

and the result also holds. � It is also possible to prove the following property:

Proposition 5.4 The particular solutions u = cst, v = cst and p = cst are pre-
served by the scheme.

In practice, we do not exactly apply the CFL condition (50). We rather compute a
local time step

∆ti,n =
h

2 max

(
| uni −

(an
i+1/2

)L

ρni
|, | uni +

(an
i−1/2

)R

ρni
|
) , (51)

and deduce an approximation of the stability time step

∆tn = δmin
i

∆ti,n, (52)

where δ is a safety factor, which satisfies 0 < δ < 1.
Numerically, we have observed a excellent robustness of the Lagrange and projec-

tion scheme with the relaxation ALE flux. We were not able to construct a test case
leading to a crash of the simulations. Of course, it is not easy to prove rigorously the
convergence of the scheme, because the projection step, which mixes deterministic
and random averaging, is rather untypical.

6 GPU and OpenCL implementation

6.1 OpenCL

For performance reasons, we decided to implement the 2D scheme on recent multicore
processor architectures, such as a Graphic Processing Unit (GPU). Many different
hardware exist, but schematically, a GPU can be considered as a device plugged into
a computer, called a host. The device is made of (see Figure 2)

• global memory (typically 1 Gb1);

• Compute Units (CU, typically 27).

Each compute unit is made of:

• Processing Elements (PE, typically 8);

• local (or cache) memory (typically 16 kb).
1the typical values are given for a NVIDIA GeForce GTX 280 GPU
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Figure 2: A (virtual) GPU with 2 Compute Units and 4 Processing Elements

The same program (a kernel) can be executed on all the processing elements at the
same time, with the following rules:

• all the processing elements have access to the global memory.

• The processing elements have only access to the local memory of their compute
unit.

• If several processing elements write at the same location at the same time, only
one write is successful.

• The access to the global memory is slow while the access to the local memory
is fast.

In order to operate a GPU, several tools are available. The CUDA environment,
for instance, allows driving the NVIDIA GPUs. OpenCL is a recent set of tools,
which allow to program many kinds of multicore processors, CPU or GPU. OpenCL
means “Open Computing Language”. It includes:

• A library of C functions, called from the host, in order to drive the GPU (or
the multicore CPU);

• A C-like language for writing the kernels that will be executed on the processing
elements.
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OpenCL is available since september 2009 [26]. The specification is managed by the
Khronos Group, which is also responsible of the OpenGL API design and evolutions.
Virtually, it allows as many compute units (work-groups) and processing elements
(work-items) as needed. The threads are sent to the GPU thanks to a mechanism
of command queues on the real compute units and processing elements. The main
advantage of the OpenCL API is its portability. The same program can run on
a multicore CPU or a GPU. Many resources are available on the web for learning
OpenCL. For a tutorial and simple examples, see for instance [17].

6.2 Implementation

We naturally organize the data in a (x, y) grid. In principle, the implementation
is not very difficult because, thanks to the Strang splitting, the full algorithm is
easy to parallelize. For recent GPU devices the number of compute units is of the
order of several hundreds. This implies that the computations are very fast and
that the time spent in the data memory transfers becomes the limiting factor. It
is thus very important to well organize the data into memory. For instance, for
computing the x-direction step (7), the data are well aligned into the memory and
two successive processing elements access two neighboring memories, which permits
to achieve optimal memory bandwidth (coalescing access). For the y-direction step
(9), if nothing is done, two successive processing elements access different rows in
memory, which leads to very slow memory access (typically ten times slower than the
coalescing access!). Thus between the two steps, we have to perform an optimized
transposition algorithm. The algorithm is very simple: it consists in splitting the
grid into small tiles of size 32 × 32. Each tile is then loaded, row after row, into
the cache memory of one compute unit. Each row can be read in a coalescing way.
The tile is then transposed in the cache memory, which is very fast. Finally, the
32× 32 tile is copied back to global memory, row after row in a coalescing way. The
algorithm is described in details in [30].

That said, the algorithm for one time step is rather simple:

• we associate a processor to each cell of the grid.

• we compute the stability local time step for each cell i (see (51). If the local
time step is smaller than the global one, then we replace the global time step.
This implies, in some cases, concurrent memory access to the global memory
if two work-items modify together the time step. From the OpenCL norm, we
know that exactly one access will be successful but we cannot know which (see
Section 6.1). In order to avoid instabilities we decrease the global time step by
an adequate safety factor.
This approach is very simple but we cannot guarantee that all executions of
our program on different devices will give exactly the same results. It would
be possible to implement a parallel algorithm for computing the smallest time
step in the grid. Such algorithm is called a reduction algorithm and the general
theory is explained in [6]. It is a little bit more complicated and in practice
our simple approach is very satisfactory.
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• we compute the fluxes balance in the x-direction for each cell of each row of the
grid: a row or a part of a row is associated to one compute unit and one cell
to one processor. As of October 2012, the OpenCL implementations generally
imposes a limit (typically 1024) for the number of work-items inside a work-
group. This forces us to split the rows for some large computations. The values
in the cells are then loaded into the local cache memory of the compute unit.
It is then possible to perform the Lagrange-projection algorithm with all the
data into the cache memory in order to achieve the highest performance.

• we transpose the grid (exchange x and y) with an optimized memory transfer
algorithm.

• we compute the fluxes balance in the y-direction for each row of the transposed
grid. Memory accesses are optimal.

• we transpose again the grid.

6.3 Speedup

In Table 1, we compare our OpenCL code when it is run on one core or four cores
of a multicore CPU, or on a recent GPU.

For evaluating the speedup of a GPU computation, we compare the same pro-
gram, executed on a CPU and a GPU. It is an advantage of OpenCL over CUDA
that exactly the same OpenCL software can be executed on one or several cores of
a CPU or on a GPU. The transfer time from CPU to GPU for the initialization and
the transfer time from GPU to CPU for post-processing are not taken into account,
but are performed only at the beginning or at the end of the computation.

We observe interesting speedups for the GPU simulations compared to the one-
core simulation. We also observe that OpenCL can be used for multicore CPU
architectures with some efficiency. The test case corresponds to the computation of
300 time steps of the algorithm on a 1024× 512 grid. One numerical flux evaluation
corresponds approximately to 500 floating point operations (flop). Four flux evalu-
ations are needed per cell and per time step. The amount of computations for this
test is thus of the order of 300 Gflop.

In the algorithm, two points are important for performance:

• the first one is the optimized transposition for improving coalescent memory
access. Without this optimization, the computations are approximately 10
times slower on the fastest GPUs.

• the second one is the relaxation approach. With this approach, the numerical
fluxes have a simpler formulation than the exact Godunov flux, with less branch
tests, and is thus more efficient on GPUs.

The performance that we have reached on GPU for this test case are similar to
those achieved by other authors recently for GPU finite volume simulations (see, for
instance, [36], [12]). On the best hardware, we achieve approximately 150 Gflop/s
in single precision. Let us repeat that the speedups presented in Table 1 compare
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hardware time (s) speedup
AMD A8 3850 (one core) 527 1
AMD A8 3850 (4 cores) 205 2.6
NVIDIA GeForce 320M 56 9.4
AMD Radeon HD 5850 3 175
AMD Radeon HD 7970 2 263

Table 1: Simulation times on different hardware

the same OpenCL code running on different hardware. It is clear that with some
optimizations, the CPU sequential version of the code could be made more efficient.
Anyway, even if we suppose that it is possible to accelerate the CPU sequential
version of the code by a factor of 10 (with compilation optimizations, algorithmic
optimizations and a better CPU) the OpenCL GPU software would be still 30 times
faster than the CPU code.

7 Numerical results

7.1 One-dimensional results

7.1.1 Introduction

Firstly, we present some numerical results on the one-dimensional equations (7) where
we do not take into account the y-velocity, it means that v = 0 at any time. We
wish to justify our choice of projection. We compare different choices of projections
for the Lagrangian approach (19). We explain why we do not use the averaging
projection (21) or the Gimm projection (22) everywhere.

We could then consider the following combinations :

• the Lagrangian scheme (19) with the averaging projection (21). We call this
scheme the “Averaging projection” scheme,

• the Lagrangian scheme (19) with the Glimm projection (22). We call this
scheme the “Glimm projection” scheme,

• the Lagrangian scheme (19) with the projection described in Section 3.2.3. We
call this scheme the “Mixed-projection” scheme,

• the ALE scheme (20) with the Glimm projection (22). We call this scheme the
“ALE” scheme.

Remark 12 The averaging projection scheme is the only one that is exactly conser-
vative, the three other schemes are only statistically conservative.

The averaging scheme produces a numerical diffusion of the mass fraction ϕ, we
need then to use the mixture law parameters defined by (3)-(4). For the three other
schemes, we do not need mixture law parameters: indeed if at initial time we have
ϕ ∈ {0, 1}, we will have ϕ = 0 or ϕ = 1 at any time.
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Quantities Left Right
ρ (kg.m−3) 10 1

u (m.s−1) 50 50

p (Pa) 1, 1× 105 1× 105

ϕ 1 0

γ 1, 4 1, 1

π 0 0

Table 2: Initial left and right states of the Riemann problem for illustrating the bad
precision of the averaging projection scheme.

7.1.2 Failure of the averaging projection scheme

We consider a Riemann problem where the interface between the two fluids is located
at time t0 = 0 s at position x = 1 m with the left and right states of Table 2.

All quantities are plot on Figure 3 at the final time t1 = 0.002 s on the domain
[−1; 1] with a number of cells equal to 500.

While the curves obtained with the Glimm projection, the mixed projection and
the ALE scheme are similar to the exact solution, the averaging projection scheme
gives very poor precision: we observe velocity and pressure oscillations (see figure
3). We also perform a convergence study on the velocity. We compare the error in
L1 norm

error =

N∑
i=1

h | ui − uExact(xi) |,

for the different schemes. In Figure 4, we observe that all schemes seems to be
convergent with the same convergence rate approximately equal to 0.5.

Even if the averaging projection (21) gives a conservative scheme, its poor preci-
sion makes it useless. If we introduce different p∞ on both sides, we can construct a
Riemann problem where this scheme crashes after only one iteration: the oscillations
on the pressure p lead to negative p + p∞ in the mixture zone 0 < ϕ < 1 and the
speed of sound c, given by (5), is no more defined.

7.1.3 A shock-interface interaction

We consider now a shock-interface interaction. At initial time t0 = 0s, we have three
states separated with two discontinuities. The first discontinuity is a shock starting
from position xshock = −4 m at velocity σ = 4 m/s and the second one is the
interface between the two fluids, starting from position xInterface = 1m at velocity
u = −1m/s. The initial positions of the interface and the shock are chosen in such
way that they will interact at position x1 = 0 m at time t1 = 1 s. We consider a grid
of 500 cells on the computational domain [−5; 2] m and a final time of t2 = 1.5 s.
The numerical data for the right, the middle and the left states are given in Table 3.
When the shock wave and the interface have interacted at time t1 = 1s, the exact
solution can be computed. It is simply given by the solution of a two-fluid Riemann
problem between the left and the right states at final time t = t2 − t1.
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Figure 3: Density, velocity, pressure and mass fraction at the final time for the
Riemann problem given by Table 2.

Figure 4: Convergence study for the Riemann problem given in Table 2.
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Quantities Left Middle Right
ρ (kg.m−3) 3, 488 2 1

u (m.s−1) 1, 13 −1 −1

p (Pa) 23, 33 2 2

ϕ 1 1 0

γ 2 2 1, 4

π 7 7 0

Table 3: Initial left, middle and right states for the shock-interface interaction.

In Figure 5, we compare all quantities for the different schemes. The curves for the
velocity u, the pressure p and the mass fraction of gas ϕ are close to the exact solution.
However, the density given by the Glimm projection scheme presents fast numerical
oscillations. The total variation of the numerical density is not bounded. We will
check that this phenomenon leads to a non-convergence of the Glimm projection
scheme.

It is interesting to observe that the interface position is very well resolved (in
only one mesh point) by the mixed projection scheme and the ALE scheme and that
this good resolution of the contact wave also implies an improvement of the precision
in the left rarefaction wave.

For this test case, we perform a convergence study on the density. We compare
the error in L1 norm with the exact solution

error =
1

xmax − xmin

N∑
i=1

h | ρi − ρExact(xi) |,

for the different schemes. In Figure 6, we observe that the Glimm projection scheme
does not converge. The other schemes seems to be convergent, the convergent rate
is approximately 0.6 for the averaging projection scheme while it is approximately
0.8 for the ALE and the mixed projection scheme. We also observe that the ALE
scheme is a little bit more precise than the mixed projection scheme.

7.1.4 Conclusion

The one-dimensional tests justify our choice of projection. The ALE scheme and the
mixed-projection scheme give good results while the two other schemes are generally
not precise and sometimes not convergent. Moreover, the interface position is very
well resolved (in only one mesh point) with the ALE and mixed-projection. In the
two convergence studies, the ALE scheme seems to be a little bit less diffusive than
the mixed projection scheme. For the two-dimensional simulations, we decide thus
to use only the ALE approach.

7.2 Pure convection

Now, we consider two-dimensional numerical tests for which we use the Strang di-
mensional splitting approach. The first test consists in the convection of a spherical

International Journal on Finite Volumes 24



OpenCL simulations of two-fluid compressible flows with a random choice method

Figure 5: Density, velocity, pressure and mass fraction at the final time for the
shock-interface interaction.

Figure 6: Convergence study for the shock-interface interaction.
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Quantities Inside the bubble Outside the bubble
ρ (kg.m−3) 1.225 1000

u (m.s−1) 100 100

v (m.s−1) −75 −75

p (Pa) 1.01325× 105 1.01325× 105

ϕ 1 0

γ 1.4 3

π 0 7.499× 108

Table 4: Initial data for the test of a convected bubble.

bubble of gas in a liquid phase. At time t = 0 the bubble is in the left top corner
(see Figure 7).

The initial parameters are presented in Table 4, the bubble moves from the
top left corner to the bottom right corner at a constant velocity. The results are
obtained with the ALE scheme and a uniform mesh of 512×512 points on the domain
[0, 1]× [0, 1]. The radius of the bubble is 0.1m and the final time of computation is
tfinal = 0.0067 s. For the boundary conditions, we simply impose the initial data.
Our algorithm does not diffuse the fraction of mass of gas ϕ, and thus ϕ = 1 in the
bubble and ϕ = 0 outside the bubble at every time. We can plot ϕ to localize the
bubble interface. We see in Figure 7 that the bubble moves correctly, the bubble at
the final time is superimposed with the exact solution, which is plot in yellow dotted
line. The last picture of the Figure 7 shows that the interface bubble is not smooth.
This lack of smoothness is of course due to the pseudo-random nature of the Glimm
projection.

7.3 Test of Zalesak

Now, we consider another classic two-dimensional convection numerical test. The test
is proposed by Zalesak in [37] and consists in computing the rotation of a complex
solid shape. We solve the equation

∂tρ+ ∂x(ρu) + ∂y(ρv) = 0, (53)

where u = −Ω(y − y0) and v = Ω(x − x0). Here Ω is the constant angular velocity
in rad/s and (x0, y0) is the axis of rotation. In order to solve this equation we use
the dimensional splitting. We just have to detail the numerical scheme used to solve

∂tρ+ ∂x(ρu) = 0.

We apply the ALE numerical scheme

hn+1,−
i ρn+1,−

i = hiρ
n
i −∆t(((ρu)ni+1/2 − ζ

n
i+1/2ρ

n
i+1/2)− ((ρu)ni−1/2 − ζ

n
i−1/2ρ

n
i−1/2)),

where uni+1/2 = (−Ω(y−y0))i+1/2 = −Ω(y−y0) does not depend on i (it just depends
on y) and

ρni+1/2 =

{
ρni , if uni+1/2 < 0,

ρni+1, if uni+1/2 ≥ 0.
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t = 0 s. t = 0.0067 s.

Figure 7: Initial position of the bubble (top left), final position of the bubble (top
right) and zoom on the bubble interface (bottom).
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The domain is [0, 1]× [0, 1] and the solid is a cylinder of radius 0.15m. A slot is
removed from the cylinder. The slot thickness is 0.05m. We assume that the density
inside the extruded cylinder is ρ = 3 and outside we have ρ = 1. The rotational
speed is chosen in such a way that after 628 s the cylinder has done one complete
revolution around the central point, i.e. Ω = 2π

628 rad.s
−1. The results are obtained

on a uniform mesh of 1000×1000 points. The time step is chosen in such a way that
the quantity hn+1,−

i remains positive, we choose

∆t ≤ 1

2

∆x

max
i

√
u2
i + v2

i

.

Remark 13 Because we just consider the equation (53), the system is hyperbolic
with only one wave speed σ = u then the CFL condition is less restrictive than for
system (1).

In Figure 8, we compare the shape of the slotted cylinder after different times. Even
after 10 revolutions, the global aspect of the solid is preserved. The length of the
“bridge” seems to be the same on the top and the bottom. The interface shape is not
so noisy, considering the simplicity of the Glimm approach, even if after 2 revolutions
we observe some part of the solid in the bridge.

7.4 Shock-droplet interaction

We now present a two-dimensional test that consists in simulating the impact of a
Mach 1.22 shock traveling though air onto a (cylindrical) bubble of R22 gas. The
shock speed is σ = 415 m.s−1. This test aims at simulating the experiment of [22]
and has been considered by several authors [28, 32, 25]. The initial conditions are
depicted in Figure 9: a bubble ofR22 is surrounded by air inside a Lx×Ly rectangular
domain. At t = 0, the bubble is at rest and its center is located at (X1, Y1). We
denote by r the initial radius of the bubble. The planar shock is initially located at
x = Ls and moves from right to left towards the bubble. The parameters for this
test are

Lx = 445mm, Ly = 89mm, Ls = 275mm, X1 = 225mm, Y1 = 44.5mm, r = 25mm.

Both R22 and air are modeled by two perfect gases whose coefficients γ and initial
states are given in Table 5.

The domain is discretized with a 5000 × 1000 regular mesh. Top and bottom
boundary conditions are set to solid walls while we use constant state boundary
conditions for the left and right boundaries.

The shock reaches the R22 bulk after approximately 60 µs. In the following we
shall consider this time as the time origin t = 0. Figure 10 and Figure 11 display the
evolution of the cylinder shape obtained with the ALE scheme and the experience of
Haas and Sturtevant [22]. Our results can also be compared with the computations
of Kokh and Lagoutière [25] because we consider the same test case with the same
initial data. The profiles are obtained thanks to the fraction of mass of gas ϕ: our
scheme preserved ϕ = 1 in the gas and ϕ = 0 in the liquid. The overall location
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t = 0 s. t = 314 s.(1
2 revolution)

t = 628 s.(1 revolution) t = 1256 s.(2 revolutions)

t = 3140 s.(5 revolutions) t = 6280 s.(10 revolutions)

Figure 8: Rotation of a solid shape.
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Shock

Post-

shock

Pre-

shock

R22 gas

r

y

x

Figure 9: Air-R22 shock/cylinder interaction test. Description of the initial condi-
tions.

Quantities Air (post-shock) Air (pre-shock) R22

ρ (kg.m−3) 1.686 1.225 3.863

u (m.s−1) −113.5 0 0

v (m.s−1) 0 0 0

p (Pa) 1.59× 105 1.01325× 105 1.01325× 105

ϕ 0 0 1

γ 1.4 1.4 1.249

π 0 0 0

Table 5: Air-R22 shock/cylinder interaction test. Initial data.
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Quantities Liquid on left side Liquid on right side Gas
ρ (kg.m−3) 1030.9 1000.0 1.0

u (m.s−1) 300.0 0 0

v (m.s−1) 0 0 0

p (Pa) 3× 109 105 105

ϕ 0 0 1

γ 4.4 4.4 1.4

π 6.8× 108 6.8× 108 0

Table 6: Liquid-gas bubble interaction test. Initial data.

of the bulk is quite similar to the experimental results (even if we consider only a
two-dimensional model). The shape of the two vortices is not exactly symmetric
with respect to X = Ly/2, because of the random nature of the Glimm projection.

7.5 Shock-bubble

We perform another shock-interface interaction test proposed in [31, 25]. It involves
a gas bubble surrounded by a liquid. It is a stiffer problem, both numerically and
physically. The geometry of the initial condition is depicted in Figure 9 with the
following parameters:

Lx = 2 m, Ly = 1 m, Ls = 0.04 m, X1 = 0.5 m, Y1 = 0.5 m, r = 0.4 m.

The gas within the bubble is governed by a perfect gas law while the liquid is modeled
with the stiffened gas law. A piston hits the left side at the velocity of 300 m/s
yielding a shock pressure of about 3 × 109. The EOS parameters and initial states
are given in Table 6. The Riemann problem between the liquid on left and right side
will induce a 3-shock wave, with a speed σ = 2181.6 m.s−1, that will interact with
the gas bubble.

The computation domain is discretized with a 3000 × 1000 grid and we use
solid wall boundary conditions for the top and bottom boundaries, while we impose
constant states at the left and right boundaries.

Figure 13 and 14 display density and pressure at several instants. As the maxi-
mum pressure increases with time, we cannot use the same scale for all the pictures.
The jump of density at the bubble interface is huge, we can not see the shock po-
sition, but we can easily see the interface by observing the density field. We can
clearly see the important variations of the interface topology and more specially the
creation of two symmetrical vortices on each side of the axis (O, x) where O is the
center the domain.

Remark 14 At some times, we obtain negative pressures in the liquid. This is not
a problem because the internal energy e = p+γπ

ρ remains positive, indeed as p '
−6× 106Pa, γliquid = 4.4, πliquid = 6.8× 108 and ρ > 0 we obtain e > 0.
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t = 55µs.

t = 115µs.

t = 135µs.

t = 187µs.

t = 247µs.

Figure 10: Air-R22 shock cylinder interaction test. Pressure field and interface on
the left; experience of Haas and Sturtevant [22] on the right.
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t = 318µs.

t = 342µs.

t = 417µs.

t = 1020µs.

Figure 11: Air-R22 shock cylinder interaction test. Pressure field and interface on
the left; experience of Haas and Sturtevant [22] on the right.
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r

y

x

Liquid on 

left side

Piston

Liquid on

right side

Gas

Figure 12: Liquid-gas shock/bubble interaction test. Description of the initial con-
ditions.

t = 225µs. t = 225µs.

t = 375µs. t = 375µs.

Figure 13: Liquid-gas bubble interaction test. Density on the left and pressure fied
on the right.
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t = 450µs. t = 450µs.

t = 600µs. t = 600µs.

Figure 14: Liquid-gas bubble interaction test. Density on the left and pressure field
on the right.

8 Conclusion

We have proposed a new method for computing two-dimensional compressible flows
with interface. Our approach is based on a robust relaxation Riemann solver, coupled
with a very simple random choice sampling projection at the interface. The resulting
scheme has properties that are not observed in other conservative schemes of the
literature:

• it preserves velocity and pressure equilibrium at the two-fluid interface;

• it is (statistically) conservative;

• the mass fraction is not diffused at all;

• it handles vacuum situations.

In addition, the algorithm is easy to parallelize on recent multicore architectures.
We have implemented the scheme in the OpenCL environment. The efficiency is
spectacular: compared to a standard CPU implementation, we observed that the
fastest GPU computations are more than hundred times faster.
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