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Abstract

This paper deals with the computation of two-phase flows in a porous

medium, with two main objectives. First of all, we will present a new

multi-dimensional well-balanced scheme, with its advantages and draw-

backs. Furthermore, we will compare results of the porous model with

approximations obtained with a full two-dimensional computation, where

all obstacles have been taken into account in the computational domain.

The two-phase flow model is hyperbolic, and the scheme takes its roots on

a modified Rusanov scheme that integrates effects due to discontinuous

porous profiles. The scheme perfectly maintains steady state profiles on

any structured mesh.

Key words : Finite Volumes, Two-Fluid Model, Porous Medium

1 Introduction

We examine in this paper the numerical modelling of two-phase flows in a multidi-
mensional computational domain that contains fluid and porous regions. The fluid
region and the porous region are separated by a fixed coupling interface, which is
assumed to be thin and plane. For clarity, we may imagine the following situation,
with a plane with a given normal direction n, containing the point (x0, y0, z0) ; the
fluid and porous regions will respectively lie on the left and right sides of this fixed
plane that will be called the coupling interface. Within both the fluid region and
the porous region, a two-fluid model is considered in order to compute unsteady
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flow patterns. Therefore, we will need to introduce -unsteady- boundary conditions
on both sides of this sharp coupling interface, in such a way that waves travelling
across this coupling interface do not introduce pollution in solutions of the coupled
problem (we refer to [2, 11] which describe the general framework on the coupling
of distinct fluid models). In the sequel, these boundary conditions at the coupling
interface will sometimes be referred to as the coupling conditions. One of the main
motivations for such a work in the framework of nuclear safety in power plants is
that the meshing of some tiny obstacles cannot be afforded in many practical situa-
tions. This occurs for instance in the core of the nuclear reactor, but also in steam
generators. The problem then is to provide some suitable model in order to take
into account in a meaningful way porous regions and sharp free/porous interfaces.

As a first step, we shall assume given boundary conditions at the coupling inter-
face (in a weak sense), and will focus on the way one should discretize governing equa-
tions, so that convergence towards exact solutions of the associated one-dimensional
Riemann problem is retrieved when the mesh is refined. These exact solutions are
of course tightly linked to the former -enforced- coupling conditions. More precisely,
we will first detail the two-fluid hyperbolic model (2) that has been retained in or-
der to compute approximations of solutions. This porous model issues from [16] ,
and has been examined in detail in this reference. We will only give here the main
features that are needed for our purposes. The free version of this model identifies
with models discussed in [1, 4, 7, 8, 9, 13, 19] . The coupling conditions that will be
assumed here simply correspond to the preservation of Riemann invariants pertain-
ing to the steady wave associated with system (2). We emphasize that this model
is different from the one which is classically used in the nuclear industry (see for
instance [22] and references therein), and also from those used in the oil industry [6] .

A presentation of the three-dimensional scheme will follow. We emphasize that
the scheme relies in fact on Greenberg and Leroux ideas (see [12]), which have been
recently revisited by Kröner and Thanh (see [21, 20]). The main idea is to integrate
in the well-balanced scheme an interface flux that is easier -and cheaper- to compute
than the original interface Godunov state, as it was first proposed by authors of [12]
. This interface flux should nonetheless be ”clever enough”, in order to guarantee
that steady states are perfectly preserved whatever the mesh size. As it was first
reported in [10] to our knowledge, the preservation of well-balanced initial conditions
by the scheme seems mandatory ; otherwise, convergence towards wrong solutions
is observed when the mesh size h tends to 0. The main properties of the simple
well-balanced scheme will be given.

Numerical results will be provided in the last section. We recall that convergence
studies have been performed in the one-dimensional framework in the companion
work [10] . Emphasis will thus be given on multi-dimensional computations. Actu-
ally, we will discuss a comparison that has been performed between two numerical
experiments on different meshes. The first experiment corresponds to the computa-
tion of the true geometry including obstacles in the computational domain. In the
second one, the region including obstacles is assumed to be a porous region. The
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influence of the topology of the region filled with obstacles and also of the mesh size
are examined in this section devoted to numerical results. This enables us to draw
some conclusions and perspectives for future work.

2 Governing equations of the two-fluid model

We start by recalling the governing equations of the two-fluid two-pressure model
that we use for computations of two-phase flows in a porous medium. (see [16]
for a brief introduction). As usual, we define the void fraction αk ∈ [0, 1] (such
that α1 + α2 = 1), the porosity ǫ ∈]0, 1], the mean velocity Uk, the mean pressure
Pk, the mean density ρk, and the internal energy ek(Pk, ρk) in phase k, for k = 1, 2.
The state variable W in R12 is:

W t = (ǫ, α2, ǫm1, ǫm2, ǫm1U
t
1, ǫm2U

t
2, ǫα1E1, ǫα2E2) (1)

that will be noted in a short way : W t = (ǫ, α2, ǫmk, ǫmkU
t
k, ǫαkEk) in the fol-

lowing. We will also note mk = αkρk the partial mass in phase k, and Ek =
ρk||Uk||

2/2 + ρkek(Pk, ρk) the total energy of phase k. Tk denotes the temperature
of phase k.

The two-fluid model reads:






















∂t (ǫ) = 0
∂t (α2) + VI .∇(α2) = φ2(W )
∂t (ǫmk) + ∇.(ǫmkUk) = 0
∂t (ǫmkUk) + ∇.(ǫmkUk ⊗ Uk) + ǫαk∇(Pk) + ǫ(Pk − PI)∇(αk) = ǫDk(W )
∂t (ǫαkEk) + ∇.(ǫαkUk(Ek + Pk)) + ǫPI∂t (αk) = ǫψk + ǫVI .Dk(W ) .

(2)

The contribution Dk refers to the drag forces, and the contributions φk and
ψk respectively correspond to the return to a pressure/thermal equilibrium. Mass
transfer might be included in equations (2), but it will not be considered herein.

The closure laws for the source terms (φ2, Dk, ψk) are the following:

2
∑

k=1

Dk(W ) = 0 ;
2
∑

k=1

ψk(W ) = 0 . (3)

where:










Dk = (−1)k m1m2

(m1+m2)(U1 − U2)/τU

φ2 = α1α2

|P1|+|P2|
(P2 − P1)/τP

ψk = KT (1/Tk − 1/T3−k)

(4)

where τU and τP denote relaxation time scales (assuming that 0 < τP < τU ),
while KT is positive. We also need to define specific entropies. If we set :

(ck(Pk, ρk))
2 =

(

Pk

(ρk)2
− ∂ρk

(ek(Pk, ρk))

)

(∂Pk
(ek(Pk, ρk)))

−1 (5)
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the specific phasic entropy sk(Pk, ρk) complies with:

(ck(Pk, ρk))
2∂Pk

(sk(Pk, ρk)) + ∂ρk
(sk(Pk, ρk)) = 0 (6)

For liquid-vapour applications, where the vapour phase is assumed to be dilute,
a meaningful couple for the interfacial velocity and the interfacial pressure is :

(VI , PI) = (U2, P1)

(see [4, 7, 9, 19]). The index 2 refers to the vapour phase. As recalled in the
following section, the specific choice (VI , PI) = (U2, P1) has a great impact on prop-
erties of the system of PDE that governs the motion of the fluids.

Though we do not consider them here, we emphasize that friction effects inside
the porous medium may be taken into account in a classical way, and also that this
does not modify the main properties of the whole model that are discussed below
(see appendix B).

3 Main properties

We recall here that :

• the nonhomogeneous system (2) is hyperbolic;

• smooth solutions of (2) comply with a physically relevant entropy inequality;

• system (2) admits unique jump conditions within each isolated genuinely non-
linear (GNL) field (see appendix C).

If we focus on the convective part -left hand side- of (2), we can first rewrite (2)
in a non-conservative form as follows:

∂t (W ) +Ax(W )∂x (W ) +Ay(W )∂y (W ) +Az(W )∂z (W ) = 0 (7)

Thus, if we define the unit vector n = (nx, ny, nz), we may introduce A(W,n) as:

A(W,n) = nxAx(W ) + nyAy(W ) + nzAz(W ) (8)

Hence we get:

Proposition 1a :
The matrix A(W,n) admits the following real eigenvalues:

λ0 = 0 , λ1 = VI · n,
λ2−4 = U1 · n , λ5 = U1 · n− c1 , λ6 = U1 · n+ c1,
λ7−9 = U2 · n , λ10 = U2 · n− c2 , λ11 = U2 · n+ c2

(9)

We may now define a frame change introducing τ1 and τ2 such that (n, τ1, τ2)
defines a fixed orthonormal basis. Taking into account the invariance under frame
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rotation of equations (2), and neglecting transverse derivatives of all components,
thus setting:

∂xτk
(φ) = 0

for k = 1, 2, whatever φ is, we focus now on the corresponding one-dimensional
problem in the n direction associated with :







































∂t (ǫ) = 0
∂t (α2) + (VI · n)∂xn

(α2) = 0
∂t (ǫmk) + ∂xn

(ǫmk(Uk · n)) = 0
∂t (ǫmkUk · n) + ∂xn

(

ǫmk(Uk · n)2
)

+ ǫαk∂xn
(Pk) + ǫ(Pk − PI)∂xn

(α2) = 0
∂t (ǫαkEk) + ∂xn

(ǫαk(Uk · n)(Ek + Pk)) + ǫPI∂t (αk) = 0
∂t (ǫmk(Uk · τ1)) + ∂xn

(ǫmk(Uk · n)(Uk · τ1)) = 0
∂t (ǫmk(Uk · τ2)) + ∂xn

(ǫmk(Uk · n)(Uk · τ2)) = 0 .
(10)

A straightforward analysis of (10) provides the following result:

Proposition 1b :
System (10) admits real eigenvalues detailed in (9). Associated right eigenvectors
span the whole space if : |(VI − Uk) · n| 6= ck, and |Uk · n| 6= ck, for k = 1, 2.

Waves associated with eigenvalues λ0, λ2−4, λ7−9 are linearly degenerate. If we
assume that VI = Uk, or VI = (m1U1 +m2U2)/(m1 +m2), the wave associated with
the eigenvalue λ1 = VI · n is linearly degenerate. The other waves associated with
λ5, λ6, λ10, λ11 are genuinely non-linear.

The proof is simple, and we refer to [7, 9] for similar results in a non-porous
framework, and also to [16] in a one-dimensional framework. The specific choice for
VI is extremely important since it guarantees well-posed jump conditions through
single shock waves.

Moreover, if we define the entropy-entropy flux : (η, fη) as follows:

η = ǫ(m1 ln(s1) +m2 ln(s2))

fη = ǫ(m1 ln(s1)U1 +m2 ln(s2)U2)

and introduce the corresponding source term :

Sη(W ) = ǫ
∑

k=1,2

(

mk(ψk −Dk(Uk − VI) + (−1)kφ2(PI − Pk))/Tk

)

we get the next result:

Proposition 2 :
The following entropy inequality holds for smooth solutions of system (2):

∂t (η) + ∇.(fη) = Sη(W ) ≥ 0 . (11)
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This also is a direct consequence of the definition of the couple (VI , PI) given
above. For shock solutions travelling at speed σ in the n direction, and seperating
two states Wl,Wr, the entropy inequality is :

−σ(η(Wr) − η(Wl)) + (fη(Wr) − fη(Wl)) · n > 0 . (12)

Eventually, we need to detail the structure of the standing wave, which cor-
responds to a LD wave. Actually, the following Riemann invariants will be the
keystone for the definition of the simple well-balanced scheme that will be intro-
duced hereafter.

Proposition 3 :
We focus on the one-dimensional Riemann problem associated with (10). The lin-
early degenerate (LD) wave associated with λ0(W ) admits the following Riemann
invariants

I0
1 (W ) = α2 ; I0

2 (W ) = s1 ; I0
3 (W ) = ǫm1U1 · n

I0
4 (W ) = e1 + P1

ρ1
+ ||U1||2

2 ; I0
5 (W ) = s2

I0
6 (W ) = ǫm2U2 · n ; I0

7 (W ) = e2 + P2

ρ2
+ ||U2||2

2

I0
8 (W ) = U1 · τ1 ; I0

9 (W ) = U1 · τ2
I0
10(W ) = U2 · τ1 ; I0

11(W ) = U2 · τ2

The proof is straightforward. Assuming that r0(W ) denotes the right eigenvector
associated with λ0(W ), it only requires to check that ∇W I0

k(W ) · r0(W ) = 0, for
k = 1, ..., 11.

4 A simple well-balanced Finite Volume scheme

We describe herein the simple well-balanced Finite Volume scheme we use. This one
is grounded on basic ideas of well-balanced schemes introduced by Greenberg and
Leroux (see [12]). Within each Finite Volume ωi of size Ωi, an approximation of the
mean value of W at time tn in cell i is:

Wn
i ≃ (

∫

ωi

W (x, tn)dx)/

∫

ωi

dx (13)

The time step ∆tn will be defined later on (see Proposition 5). Moreover, we define:

aij = (ai + aj)/2

where i, j refer to indexes of two neighbouring cells. Sij denotes the surface of the
interface connecting cells i and j.

We define the state variable Zt = (α2,mk,mkUk, αkEk) in R11. Given some unit
normal vector n, we define the normal flux fn(Z, n) in R11 as follows:

fn(Z, n)t = (0,mkUk · n, (mkUk · n)Uk + αkPkn, αkUk · n(Ek + Pk)) (14)
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We use a splitting technique in order to discretize convective terms and source
terms. In step I, we compute explicit approximations of solutions of the homoge-
neous problem associated with the left-hand side of (2). Then source terms are
taken into account in step II using implicit schemes. Actually, the computation of
the whole set (2) complies with the overall entropy inequality (11).

The first step thus reads :























∂t (ǫ) = 0
∂t (α2) + VI · ∇(α2) = 0
∂t (ǫmk) + ∇ · (ǫmkUk) = 0
∂t (ǫmkUk) + ∇ · (ǫmkUk ⊗ Uk) + ǫαk∇(Pk) + ǫ(Pk − PI)∇(αk) = 0
∂t (ǫαkEk) + ∇ · (ǫαkUk(Ek + Pk)) + ǫPI∂t (αk) = 0 .

(15)

Numerical algorithms that are needed to compute approximations of solutions
of the ODE (16) in the second step:























∂t (ǫ) = 0
∂t (α2) = φ2(W )
∂t (ǫmk) = 0
∂t (ǫmkUk) = ǫDk(W )
∂t (ǫαkEk) + ǫPI∂t (αk) = ǫψk + ǫVI .Dk(W ) .

(16)

or alternatively :























∂t (ǫ) = 0
∂t (α2) = φ2(W )
∂t (mk) = 0
∂t (mkUk) = Dk(W )
∂t (αkEk) + PI∂t (αk) = ψk + VI .Dk(W ) .

(17)

are detailed in [9, 17] and thus are not recalled here.

The discrete variable ǫ is assumed to be constant within each cell. The cell
scheme is:

Ωi(Z
n+1
i − Zn

i ) + ∆tn
∑

j∈V (i)

(

F (Zn
i , Z

n
ij,i, nij)Sij

)

+ ∆tn(NCT )n
i = 0 (18)

V (i) contains all neighbouring cells of cell i, and nij is the outward normal vector
pointing from cell i to cellj.

The numerical flux is defined by:

F (Zn
i , Z

n
ij,i, nij) =

(

fn(Zn
i , nij) + fn(Zn

ij,i, nij) − (rWB)n
ij(Z

n
ij,i − Zn

i )
)

/2 (19)

where the scalar (rWB)n
ij is defined as:

(rWB)n
ij

def
= max

k=1,2
(|(Uk · n)n

ij,i|, |(Uk · n)n
ij,j |, r

n
i , r

n
j )
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where rn
i stands for the spectral radius of the Jacobian matrix A(Wn

i , n) introduced
in (8).

The contribution of non-conservative terms (NCT )n
i is a rough centered approx-

imation as follows:

NCTn
i = ...

(

(VI)
n
i ·

∑

j∈V (i)

(α2)ijnijSij , 0,−(PI)
n
i

∑

j∈V (i)

(αk)ijnijSij ,−(PI)
n
i (VI)

n
i ·

∑

j∈V (i)

(αk)ijnijSij

)

(20)
This centered scheme is admissible since the diffusion coefficient (rWB)n

ij in the flux
definition takes all wave speeds of the whole convective set into account.

The values Zn
ij,i are obtained by solving the non-linear equations (for m = 0 to

10):
Inv0

m(Zn
ij,i, ǫi) = Inv0

m(Zn
j , ǫj) (21)

Quantities Inv0
m(Z, ǫ) are straightforward extensions of the eleven Riemann invari-

ants of the standing wave introduced in Proposition 3. Thus we have:

Inv0
0(Z, ǫ) = α2

Inv0
5k−4(Z, ǫ) = sk(Pk, ρk)

Inv0
5k−3(Z, ǫ) = ǫmkUk · n

Inv0
5k−2(Z, ǫ) = Uk · τ1

Inv0
5k−1(Z, ǫ) = Uk · τ2

Inv0
5k(Z, ǫ) = ek(Pk, ρk) + Pk/ρk + ||Uk||

2/2

(22)

for k = 1, 2. If ǫi = ǫj , then obviously Zn
ij,i = Zn

j is a solution. Moreover, we
also get in that case : Zn

ij,j = Zn
i , and thus the normal flux is continuous through

the interface ij. A straightforward consequence is that, if NCT is null (assuming
a constant void fraction), one retrieves the conservative form of equations when
the porosity is locally uniform. In addition, the scheme identifies with the classical
Rusanov scheme in that case. We must note here that the last Riemann invariant
Inv0

5k(Z, ǫ) may be written in a slightly different form, since:

Inv0
5k(Z, ǫ) = ek(Pk, ρk) +Pk/ρk + (Uk · n)2/2 + (Inv0

5k−1(Z, ǫ)
2 + Inv0

5k−2(Z, ǫ)
2)/2
(23)

which means that the quantity ek(Pk, ρk)+Pk/ρk +(Uk ·n)2/2 should be preserved,
and this is exactly equivalent to the one-dimensional formulation (see [10]). Details
pertaining to the exact computation of the quantities Zn

ij,i are given in appendix
D. In practice, this step requires solving two uncoupled non-linear scalar equations
on both sides of the cell interface ij, for both phases. More precisely, we need to
compute four quantities (ρk)

n
ij,i and (ρk)

n
ij,j (for k = 1, 2) at each cell interface ij.

Each non-linear scalar equation involves a function ψ(X) which is either increasing
with respect to X, or decreasing and then increasing (which is the general case).
Thus the computation of solutions is rather easy and it is not consuming too much
CPU time. We give now the main properties of the scheme.
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5 Main properties of the scheme

In the framework of one-dimensional computations, this simple well-balanced scheme
preserves flows at rest, even when the porosity is not uniform (see [10]). Turning
then to multi-dimensional flows, and assuming some restrictions on the EOS, one
may check that some basic contact solutions of the form :

Pk(., t) = P0 Uk(., t) = U0 Vk(., t) = Wk(., t) = 0

are perfectly predicted on any structured rectangular mesh, when restricting to uni-
form porous profiles (the proof is obvious and similar to the one given in [10] in the
pure one-dimensional framework).

Moreover, based on [10] , it seems in practice that the well-balanced property is
necessary in order to obtain convergence towards the correct one-dimensional dis-
continuous solutions, when the initial data contains discontinuous values of porosity.
Thus the following result is indeed crucial:

• Proposition 4:
We consider initial data for a one-dimensional Riemann problem, such that
ǫL 6= ǫR. We assume that the initial conditions (WL,WR) of the Riemann
problem comply with : I0

m(WL) = I0
m(WR), for m = 1 to 11. Then the scheme

( (18),(21)) introduced in the previous section preserves steady states on any
structured mesh.

A crucial point in the proof is linked with the exact computation of the Zij,i.
The proof is almost the same as the one given in [10] . We must recall here that
more classical schemes (such as Rusanov scheme for instance) do not ss enjoy
this latter property, and it has been pointed out in [10] that a straighforward
consequence is that these schemes do not guarantee convergence towards the
right solutions, when sharp discontinuities on ǫ are present in the computa-
tional domain.

Eventually, the next result provides a useful condition on the time step ∆tn :

• Proposition 5:
Both void fractions α1 and α2 and partial masses m1,m2 remain positive pro-
vided that the following CFL condition holds:

∆tn

2Ωi

∑

j∈V (i)

(rWB)n
ijSij ≤ 1 ∀i (24)

The proof is given in appendix A.

International Journal on Finite Volumes 9
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6 Numerical results

In this section, we will first examine some one-dimensional tests in order to validate
the algorithms. Afterwards, we will focus on a comparison between two different
approaches. In a first series of tests, we will compute the fluid flow in a channel
with a pure free medium at the inlet, followed by a sudden uniform porous region.
Then, we will examine the true behaviour of the fluid when the computational do-
main takes obstacles into account, and thus requires no homogeneization. Hence
the main objective in the second part is to examine the suitability of the coupling
conditions between free and porous media. The well-balanced formalism that has
been implicitly retained in the formulation of coupling boundary conditions enforces
the continuity of Riemann invariants of the steady wave (see Proposition 3). Ac-
tually, we may expect that the conservation of both mass flux and total enthalpy
holds through the counterpart of the sharp free/porous interface, when focusing on
the true multidimensional simulation including an accurate description of obstacles.
However, on the other hand, the preservation of the entropy seems questionable.
Thus we will focus on three specific variables when comparing numerical results,
which are : ǫmkUk · n, sk, and the total enthalpy Hk defined as:

Hk = (Ek + Pk)/ρk

All numerical experiments have been achieved using perfect gas EOS, setting γ1 =
1.1 and γ2 = 1.4.

6.1 Some one-dimensional test cases

Initial values of velocity components in y, z directions have been set to 0 in the
following two test cases, and regular cubic meshes have been used.

6.1.1 Analytical test cases

• We start with a one-dimensional test case where initial conditions are well-
balanced. In practice, we consider the following values:

state L state R

γ1 1.1

γ1 1.4

ǫ 1 0.6

α1 0.95

ρ1 1000

U1 0

P1 100000

ρ2 100 92.0641467

U2 10 18.1033195

P2 100000 89069.0346

The computational domain is [0, 1]. The initial discontinuity is located at
x = 0.5, and the CFL number has been set to 1/2. We use a coarse mesh

International Journal on Finite Volumes 10
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with 100 regular cells in order to emphasize differences between the present
well-balanced scheme WBR which complies with Proposition 4, and the clas-
sical Rusanov scheme. We have plotted the three Riemann invariants ǫmkUk,
Sk and Hk for both phases (see Figure 1), and also the three main variables
ρk, Uk, Pk (see Figure 2). We can observe spurious oscillations due to the cou-
pling interface when focusing on Rusanov scheme, whereas the well-balanced
scheme performs perfectly well and maintains initial data steady. This was
expected of course, owing to Proposition 4 given above. The exact solution
and the WBR approximation are identical in this case. We insist that a mesh
refinement does not yield convergence towards the correct solution when re-
stricting to Rusanov scheme, which cannot be guessed when looking at results
below.

• The second test is a Riemann problem for which an exact solution is avail-
able. This test case, that has been introduced in [10] , corresponds to a
one-dimensional Riemann problem. It involves many “ghost” waves in the
x-direction, through which no variation of the state variable occurs. The com-
putational domain is still [0, 1], and the initial discontinuity is again located at
x = 0.5. The mesh contains 5000 cubic cells and the CFL number is set to 1/2.
Intermediate states only vary through the waves associated with eigenvalues
λ0 = 0, λ1 = U2 = Vi and λ11 = U2 + c2. Initial conditions for left and right
states WL and WR are recalled below, together with values of the two -non
trivial- intermediate states WA and WB.

state L state A state B state R

ǫ 1 0.6

α1 0.95 0.05

ρ1 1 0.999190167 0.853058301

U1 10 16.6801748 −160.919041

P1 100000 99910.922 83960.8032

ρ2 0.1 0.0998565629 0.15 0.1

U2 15 25.0359108 −346.262753

P2 10000 9979.92457 94534.4211 53175.6119

Setting ξ = (x− 1/2)/t, the analytic solution is :















W (ξ) = WL when: ξ < 0
W (ξ) = WA when: 0 < ξ < UI

W (ξ) = WB when: UI < ξ < σ2

W (ξ) = WR when: σ2 < ξ

(25)

where UI = (U2)A = (U2)B and σ2 = [ρ2U2]
R
B/[ρ2]

R
B. Figure 3 shows the

behaviour of both pressures P1, P2 and velocities U1, U2. Due to the numerical
viscosity of scheme WBR, we can hardly distinguish states (P2)A and (P2)L.
This is emphasized by the fact that these two values are close to one another,
and it is also due to the slow velocity of the void fraction wave VI compared
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Figure 1: Riemann invariants of the steady wave for the well-balanced test case. The
red line with triangles corresponds to scheme WBR, and the dark line with crosses
corresponds to Rusanov approximation. Mean discharges Q1 (left) and Q2 (right)
-top- Entropies S1 (left) and S2 (right) -middle- Total enthalpies H1 (left) and H2

(right) -bottom-

with the speed of the 2−shock. No spurious behaviour is observed through
the two LD waves associated with λ0 and λ1 = VI .

These results are exactly the same as those obtained with the pure 1D algo-
rithm. We retrieve the expected h1/2 convergence towards the exact solution,
for fine enough meshes (see [10]).
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Figure 2: Variables ρk, Uk, Pk in the well-balanced test case, respectively on top,
middle, bottom. The red line with triangles corresponds to scheme WBR, and the
dark line with crosses corresponds to Rusanov approximation. Mean densities ρ1

(left) and ρ2 (right) -top- Velocities U1 (left) and U2 (right) -middle- Pressures P1

(left) and P2 (right) -bottom-

6.1.2 Propagation of a strong shock wave in a one-dimensional duct

This second test is also the exact counterpart of another test case investigated in
[10] . A right-going shock wave is generated at xr = 0.65 in the x-direction, on
the left side of a sharp free/porous interface located at xp = 0.67. The porosity
profile is ǫ(x, y, z) = 1 for x < xp and ǫ(x, y, z) = 0.6 for x > xp. We have set here
CFL = 1/2, and the mesh contains 1000 regular cubic cells. Initial states on both
sides of xr are :

(α2)L = 0.95 (P1)L = (P2)L = 106 (U1)L = (U2)L = 0 (ρ1)L = 1 (ρ2)L = 20
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Figure 3: Pressure and velocity profiles along the x-axis of the duct for test case 1.

and :

(α2)R = 0.05 (P1)R = (P2)R = 105 (U1)R = (U2)R = 0 (ρ1)R = 1 (ρ2)R = 20

In Figure 4, the solution has been plotted along the x-axis when the initial right-
going shock wave is close to the right exit boundary. It may be checked that both Rie-
mann invariants of the steady wave Hk and sk remain uniform across the free/porous
interface xp = 0.67.

6.1.3 Comments

The computational results that have been obtained for these two test cases in the
x-direction are exactly the same as the pure 1D results discussed in [10] . Moreover,
we emphasize that the same test cases in y direction (respectively in z direction)
have been computed, and provide exactly the same results.

We focus now on multidimensional computations in order to evaluate the porous
approach that has been proposed before.
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Figure 4: Enthalpy profiles H1, H2 -top- and entropy profiles S1, S2 -bottom- along
the x-axis of the duct for test case 2.

6.2 Comparing the free and the porous approaches

6.2.1 Test 3: Transition between a free medium and a porous medium

In order to compare the porous and free approaches, we compute the free flow in a
rectangular computational domain [0, 24]×[0, 40] containing six identical rectangular
obstacles aligned with the y-direction on the upper part of the domain (for y ∈
[20, 40]). Within this region, the fluid can flow through a surface, the aspect ratio
of which is 1/2. A sketch is given in Figure 5 with different meshes.

In a second experiment, we consider the porous approach proposed in the first
section. Thus, the computational domain is now the full rectangle (x, y) ∈ [0, 24] ×
[0, 40]. The porosity distribution is given by ǫ(x, y) = 1, except for the upper region
where ǫ(x, y) = 1/2, for y ∈ [20, 40]. A very coarse mesh has been used here first
(960 square cells), since it corresponds to the real mesh size that one can afford in
practice for industrial computations.

The same inlet (for y = 0) boundary conditions are used for the free and the
porous approach, and inlet states are : P1 = P2 = 105, V1 = V2 = 100, α1 = 0.95
and ρ1 = 1, ρ2 = 1. Homogeneous Neumann outlet (for y = 40) boundary conditions
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Figure 5: Computational domains used for the free approach with six identical
rectangular obstacles in Test 3 (with one medium change). Top : 24 cells on X, 40
on Y (left) , 48 cells on X, 80 on Y (right). Bottom: 96 cells on X, 160 on Y (left),
192 cells on X, 320 on Y (right).

are imposed for both experiments. Symmetry boundary conditions are imposed on
both sides (x = 0 and x = 24), using the mirror state technique. The CFL number
is still 1/2.

As explained in part 4, the simple well-balanced Finite Volume scheme described
herein is based on the 0-Riemann invariants connection at each interface of the mesh.
Thus we will focus here on steady states. Figure 6 provides the time residual:

Rn(a) =
∑

i=1,N

|an+1
i − an

i |Ωi/∆t
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for any variable a (N denotes the total number of cells in the computational do-
main). We will examine more specifically entropies S1 and S2 which are two among
the eleven Riemann invariants of the standing wave associated with the eigenvalue
λ0(W ).
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Figure 6: Test 3: Logarithm of time residual for energy, momentum and mass, for
both phases, considering the finer mesh (d) (192x 320 cells). Subscript L corresponds
to liquid and subscript V refers to vapour.

Figure 7 shows the liquid entropy profiles S1 on different mesh sizes for the free
approach, thus including real obstacles. Focusing on the porous approach, S1 is
constant and equal to 100000 in all the computational domain.

On Figure 8, entropy profiles for both phases have been plotted along the y-axis,
for x situated in the middle of the domain (x = 12). Computations (a) to (d) have
been performed on the real geometry including obstacles, and computation (e) has
been performed with the porous approach. While entropy profiles are uniform with
the porous approach, they are not constant with the free approach.

Figure 9 summarizes all liquid entropy profiles S1 shown in Figure 8 on a same
graph. The dashed black line corresponds to the porous approach on a coarse mesh,
and plain lines correspond to the free approach. The brown one with crosses cor-
responds to the coarser mesh (a) presented on Figure 5, the blue one with stars to
the second coarser mesh (b), the red one with circles to mesh (c), and the green one
with triangles corresponds to the finer mesh (d) for the free approach.

Hence, both experiments obviously differ when focusing on entropy distributions.
The present mesh refinement does not allow us to conclude definitely, but it seems
very unlikely that the approximate solutions in the free approach would converge
towards a uniform profile. It suggests that the mathematical tool provided by the
well-balanced approach is fine, but that the current coupling conditions on the sharp
free-porous interface, which enforce the preservation of all 0-Riemann invariants,
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Figure 7: Test 3: Mean liquid entropy S1 in a free medium with six obstacles,
considering different meshes. Top : 24 cells on X, 40 on Y (left) , 48 cells on X,
80 on Y (right). Bottom: 96 cells on X, 160 on Y (left), 192 cells on X, 320 on Y
(right).

must be improved from a physical point of view.

6.2.2 Test 4: Flow passing a region containing regular obstacles

We now focus on a domain which contains two medium transitions. First, we com-
pute the free flow in a rectangular computational domain [0, 24]× [0, 30] containing
six identical rectangular obstacles aligned with the y-direction in the middle of the
domain (for y ∈ [10, 20]). Within this region, the fluid can flow through a surface,
the aspect ratio of which is still 1/2. A sketch is given in Figure 10 with different
meshes.

In a second experiment, we consider again the porous approach. Thus, the com-
putational domain is now the full rectangle (x, y) ∈ [0, 24] × [0, 30]. The porosity
distribution is given by ǫ(x, y) = 1, while we prescribe ǫ(x, y) = 1/2, for y ∈ [10, 20].
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[Free approach. Mesh size: 24 cells on X, 40 cells on Y]

[Free approach. Mesh size: 48 cells on X, 80 cells on Y]

[Free approach. Mesh size: 96 cells on X, 160 cells on Y]

[Free approach. Mesh size: 192 cells on X, 320 cells on Y]

[Porous approach. Mesh size: 24 cells on X, 40 on Y]

Figure 8: Test 3: Liquid and vapour entropy profiles S1 (left) and S2 (right) along
the y-axis, for x situated in the middle of the domain. Computations (a) to (d) :
free approach, computation (e) : porous approach. Values on the abscissa axis of
the graphs correspond to the cell number in the y-direction.

Two meshes have been used here. The first one corresponds to the coarser mesh (a)
of the figure 10 (24 cells on X, 30 on Y), and the second one corresponds to the finer
mesh (d) (192 cells on X, 240 on Y) without obstacles.
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Figure 9: Test 3: Liquid entropy profiles S1 for the porous approach (dashed black
line) and the free approach (plain brown, blue, red, green lines correspond to coarse
to fine mesh respectively).

The same inlet (for y = 0) and outlet (for y = 30) boundary conditions are
imposed for both experiments, and these are the same as for test 3. Symmetry con-
ditions are enforced on both sides of the computational domain (x = 0 and x = 24).
The CFL number is still 1/2. We focus again on steady results (see Figure 11 for
time residual) and we expect results that are similar to those obtained in test 3. The
objective here is to make sure that discrepancies still remain, whenever the flow is
incoming or outcoming the region including obstacles.

We still focus on entropy profiles. Figure 12 presents on the same graph the
liquid entropy S1 along the y-axis for x = 12, for both the free and porous ap-
proaches, when using different meshes. The dashed black line corresponds to the
porous approach (coarse and fine meshes give the same result: S1 is constant), and
plain lines correspond to the free approach. Turning then to the free approach, the
brown line with crosses corresponds to the coarser mesh (a), the blue one with stars
to the second coarser mesh (b), the red one with circles to mesh (c), and the green
one with triangles corresponds to the finer mesh (d).

We can once more observe on Figure 12 that each transition (free medium to
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Figure 10: Computational domains used for the free approach with six identical
rectangular obstacles in Test 4 (two medium changes). Top : 24 cells on X, 30 on Y
(left) , 48 cells on X, 60 on Y (right). Bottom: 96 cells on X, 120 on Y (left), 192
cells on X, 240 on Y (right).

porous medium at y = 10, or the reverse at y = 20) leads to an increase of the
entropy S1 when focusing on the true approach with real obstacles, while the porous
approach keeps the entropy constant.

6.3 On the influence of the number of obstacles

We now focus on the influence of the number of obstacles in the free approach. The
main goal here is to make a comparison between different distributions of obstacles,
while assuming a given aspect ratio 1/2. We will also recall the comparison with the
porous approach. This will help to evaluate the validity of the porous formulation.

6.3.1 Presentation of Test 5

Thus we compute again the free flow in the same computational domain as for Test
4 ((x, y) ∈ [0, 24] × [0, 30]) with 192 cells on X and 240 cells on Y, while choosing
a different number of obstacles in the porous region. The given aspect ratio is still
1/2 in the middle of the domain (for y ∈ [10, 20]), that includes either 6, 12, 24 or
48 obstacles, when considering the free approach. A sketch is given in Figure 13.
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Figure 11: Test 4: Logarithm of the time residual of energy, momentum and mass
for both phases for the finer mesh (d) (192x240 cells). Subscript L corresponds to
the liquid and subscript V refers to the vapour.
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Figure 12: Liquid entropy profiles S1 for the porous approach (dashed black line)
and the free approach (plain lines) for Test 4 (including two medium changes).

In order to study the results obtained with the porous approach, the poros-
ity distribution is again given by ǫ(x, y) = 1 everywhere in the domain except for
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y ∈ [10, 20] where ǫ(x, y) = 1/2.

[6 obstacles] [12 obstacles]

[24 obstacles] [48 obstacles]

Figure 13: Computational domains used in Test 5 (192 cells on X, 240 on Y)

The same boundary conditions are imposed for both experiments (the same as
for tests 3 and 4), and the CFL number is still 1/2.

We examine steady results, focusing on the Riemann invariants of the standing
wave.

6.3.2 Entropy profiles for Test 5

Figure 14 presents the liquid entropy profiles S1 along the y -axis for x = 12. The
dashed black line corresponds to the porous approach and plain lines correspond
to the free approach with different numbers of obstacles. The green (respectively
red, blue, brown) line corresponds to the simulation of the free approach including 6
(respectively 12, 24, 48 ) obstacles, computed with a mesh including (192×240) cells.

Whatever the number of obstacles is, the free approach leads to an increase of
the liquid entropy S1 at each medium transition, but the results obviously differ,
depending on the number of obstacles. The following table presents liquid entropy
values for y = 15 (in the porous medium) and y = 26, 25 (in the free medium,
output). The relative error between the constant state of each computation in the
free medium - on the finer mesh- and the S1’s value for the porous approach are
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Figure 14: Liquid entropy profiles S1 for the porous approach (dashed black line)
and the free approach (plain lines) along the y-axis, using 6, 12, 24, 48 obstacles.
Mesh size: 192 x 240 cells

evaluated as follows :

∆S1
=

(

(S1(y))free − (S1(y))porous

(S1(y))porous

)

porous medium fluid medium, output
Approach y = 15 y = 26, 25

Porous S1 = 100000

Free - 6 obstacles S1 = 100926; ∆S1
= 0, 92% S1 = 101816; ∆S1

= 1, 82%

Free - 12 obstacles S1 = 101172; ∆S1
= 1, 17% S1 = 102303; ∆S1

= 2, 30%

Free - 24 obstacles S1 = 101452; ∆S1
= 1, 45% S1 = 102847; ∆S1

= 2, 84%

Free - 48 obstacles S1 = 101677; ∆S1
= 1, 67% S1 = 103280; ∆S1

= 3, 28%

On the basis of graph 14, computational results show that the associated error
is less than 3%, and we also know from Test 4 results, that the error decreases with
a mesh refinement. It also clearly arises that discrepancies slightly increase with
the number of obstacles, for a given number of cells in the computational domain.
However, it must be emphasized that a larger mesh refinement is expected in order to
reach a fair level of accuracy, for the case involving the greater number of obstacles.

6.3.3 Test 5: Mass flow rate profiles

In order to compare the porous approach results where the mass flow rates are
(Qk)por = ǫmkUk.n on the one hand, and the free approach results where the mass
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flow rates are (Qk)free = mkUk.n on the other hand (since ǫ = 1 everywhere), we
focus on the mass flow rate integral over the x-axis, normal to the main flow direc-
tion. Thus the concept of the porous surface ǫ (equal to 1/2 where y ∈ [10, 20]) may
be taken into account in both the free and the porous approaches.

Focusing on steady results, we recall that the mass flow rate Qk is a Riemann
invariant in the standing wave for the porous approach. Turning then to the free
approach, we note that the integral of the mass flow rate also has to be constant for
steady states. This is true for interface values for any mesh size, and also for cell
mean values when the mesh size tends towards 0 .

The discrete form of this integral
∫

x αkρkUk.n dS, for a given y ∈ [0, 30], is
∑

i(αkρkUk.n)iSi along the corresponding line indexed by j. The discrete integral
of the liquid mass flow rate is plotted on Figure 15, for all meshes, when the domain
contains six obstacles. We emphasize here that the integral that has been computed
takes cell values into account.
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Figure 15: Discrete mass flow rate profilesQ1 for the free approach (plain lines) along
the y-axis (240 cells), focusing on Test5 including six obstacles, and for different mesh
sizes.

We turn now to the influence of obstacles (see Figure 16). The dashed black line
corresponds to the porous approach and plain lines correspond to the free approach.
The green (respectively red, blue, brown) line corresponds to the simulation of the
free approach including 6 (respectively 12, 24, 48 ) obstacles.

We notice that the integral mass flow rate is almost uniform around sharp tran-
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sitions, whatever the mesh refinement is (see Figure 15), and also independently of
the number of obstacles (see Figure 16). This is indeed confirmed by a mesh refine-
ment. It confirms that the current coupling condition in the porous model, which
enforces a constant mass flow rate on the sharp free-porous interface, is fine.
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Figure 16: Profiles for liquid mass flow rates Q1 for the porous approach (dashed
black line) and the free approach (plain lines) along the y-axis (240 cells), considering
6, 12, 24, 48 obstacles.

Similar results and comments pertaining to the third Riemann invariant of the
standing wave (corresponding to the enthalpy Hk) hold. This again validates the
basic porous approach in presence of a sharp free-porous transitions.

The last series of figures provides some velocity profiles.

7 Conclusion

One first main conclusion is that the simple well-balanced scheme described here
is indeed a useful tool in order to tackle the computation of two-phase flows in
domains containing porous areas. This is really interesting, since it suggests that
one can now concentrate on the ”ultimate” formulation for the coupling boundary
conditions between a free and a porous region, and then rely on the proposed well-
balanced numerical strategy in order to compute approximations of solutions that
will comply with these prescribed -and enforced- boundary conditions.

Moreover, we have investigated and compared in this paper the results obtained
while retaining the 3D homogeneized approach (the so-called porous formulation),
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[Free approach. 6 obstacles]

[Free approach. 12 obstacles]

[Free approach. 24 obstacles]

[Free approach. 48 obstacles]

[Porous approach]

Figure 17: Liquid and vapour velocity profiles V1 (on the left side) and V2 (on the
right side) along the y-axis, for x situated in the middle of the domain. Computations
(a) to (d) : free approach, computation (e) : porous approach. Values on the abscissa
axis of the graph correspond to the cell number.
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or alternatively the true three-dimensional approach where all obstacles are taken
into account in the computational domain and meshes. More precisely, we have ex-
amined discrepancies in results connected to the flow coming from a free region and
entering a domain filled with tubes or rods aligned with the mean flow direction.
This corresponds to a schematic representation of the flow entering the core region
or a steam generator, in the coolant circuit of a pressurized water reactor. The
comparison suggests a few conclusions that are listed below.

• Concerning competitiveness, we may claim that for a given number of cells,
the porous approach enables to reach convergence (with respect to the mesh
size) much faster than the true 3D approach. This of course is interesting for
industrial purposes.

• Concerning the suitablity of algorithms, the proposed well-balanced scheme
behaves well in the 3D porous approach, in terms of stability. Obviously its
Rusanov flavour does not favour the accuracy, for a given mesh size, and one
may expect that more accurate well-balanced approximate Riemann solvers
(such as the one described in [14, 15]) might improve the accuracy of compu-
tations.

• Turning then to the coupling boundary conditions, the comparison suggests
that the enforced coupling conditions through a free/porous interface that are
implicitely provided by the Greenberg-Leroux formalism might be improved,
and more precisely that the preservation of the entropy is a bit too rough.
Some alternative proposals in that direction are currently investigated, which
aim at providing realistic corrections such as those described in [18] .
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8 Appendix A

We give below some details of the proof for property 5, that ensures the positivity
of partial masses and void fractions if some CFL condition holds.

Partial masses
The proof is easy to obtain. Starting from the cell scheme (18):

Ωi(Z
n+1
i − Zn

i ) + ∆tn
∑

j∈V (i)

(

F (Zn
i , Z

n
ij,i, nij)Sij

)

+ ∆tn(NCT )n
i = 0 (26)
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we know that cell values of partial masses are updated through:

Ωi((mk)
n+1
i − (mk)

n
i )...

+∆tn

2

∑

j∈V (i)

(

(mkUk)
n
i .nij + (mkUk)

n
ij,i.nij − (rWB)n

ij((mk)
n
ij,i − (mk)

n
i )
)

Sij = 0

(27)
Thus:

Ωi((mk)
n+1
i − (mk)

n
i ) + ∆tn

2

∑

j∈V (i)

(

(mkUk)
n
ij,i.nij − (rWB)n

ij((mk)
n
ij,i − (mk)

n
i )
)

Sij = 0

(28)
since

∑

j∈V (i)

nijSij = 0. Hence we get:

Ωi(mk)
n+1
i = ...

(mk)
n
i

(

Ωi −
∆tn

2

∑

j∈V (i)

(rWB)n
ijSij

)

+ ∆tn

2

∑

j∈V (i)

(mk)
n
ij,i

(

(rWB)n
ij − (Uk)

n
ij,i.nij

)

Sij

(29)
Owing to the definition of (rWB)n

ij , and to the fact that 0 ≤ (mk)
n
i and 0 ≤ (mk)

n
ij,i,

we may conclude that (mk)
n+1
i is positive provided that the following CFL-like

condition holds:

∆tn

2Ωi

∑

j∈V (i)

(rWB)n
ijSij ≤ 1

which concludes the proof.

Void fractions
Once again, starting from (18), we know that cell values of void fractions are

governed by:

Ωi((α2)
n+1
i − (α2)

n
i )...

+∆tn(VI)
n
i .

∑

j∈V (i)

(α2)ijnijSij −
∆tn

2

∑

j∈V (i)

(rWB)n
ij

(

(α2)
n
ij,i − (α2)

n
i

)

Sij = 0 (30)

Thanks to (α2)
n
ij,i = (α2)

n
j , we deduce:

Ωi(α2)
n+1
i = ...

(α2)
n
i

(

Ωi −
∆tn

2

∑

j∈V (i)

(rWB)n
ijSij

)

+ ∆tn

2

∑

j∈V (i)

(α2)
n
j

(

(rWB)n
ij − (VI)

n
i .nij

)

Sij

(31)
The definition of (rWB)n

ij and the above mentionned CFL condition enable to con-

clude that (α2)
n+1
i remains positive, since all quantities (α2)

n
m are assumed to be

positive. A similar result holds for α1.
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9 Appendix B

Friction effects may be taken into account within the porous medium. For that
purpose, we need to introduce additional terms fk, gk in both momentum and energy
governing equations. These turn out to be :























∂t (ǫ) = 0
∂t (α2) + VI · ∇(α2) = φ2(W )
∂t (ǫmk) + ∇ · (ǫmkUk) = 0
∂t (ǫmkUk) + ∇ · (ǫmkUk ⊗ Uk) + ǫαk∇(Pk) + ǫ(Pk − PI)∇(αk) = ǫDk(W ) + ǫfk(W )
∂t (ǫαkEk) + ∇ · (ǫαkUk(Ek + Pk)) + ǫPI∂t (αk) = ǫψk + ǫVI ·Dk(W ) + ǫgk(W ) .

(32)
We now wonder what is the influence of these friction terms on the entropy

inequality. The derivation of the entropy time variation is straightforward. We thus
only recall here the final expression:

∂t (η) + ∇.(fη) = Sη(W ) + ǫ
∑

k

ak(gk(W ) − fk(W ).Uk) . (33)

Starting from expressions arising from the literature [3] , we get gk(W ) = 0 and:

fk(W ) = −MkUk . (34)

Obviously, the friction effects will contribute to the entropy production provided that
the matrices Mk + M t

k are positive half-definite, which is guaranteed by standard
closure laws (see [3] ).

10 Appendix C

Jump conditions in single GNL waves are simply those corresponding to a pure
single phase framework, due to the decoupling of both phases on each side of the
coupling wave associated to λ1. In a one-dimensional framework, an unsteady shock
wave, separating two states Wl,Wr, and travelling at speed σ in the n direction is
characterized by :

[αk]
r
l = 0

−σ[ρk]
r
l + [ρkUk]

r
l = 0

−σ[ρkUk]
r
l + [ρkU

2
k + Pk]

r
l = 0

−σ[Ek]
r
l + [Uk(Ek + Pk)]

r
l = 0

(35)

11 Appendix D

We assume that both ǫi and ǫj are non zero. On the ij interface separating cells i
and j (on the left side and right side respectively), we introduce the outward unit
normal nij . We also define vectors (τ1)ij and (τ2)ij in such a way that (n, τ1, τ2)ij is
an orthonormal basis. Zij,i must comply with :

Inv0
m(Zn

ij,i, ǫi) = Inv0
m(Zn

j , ǫj)
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for m = 0, .., 10. Thus we get:

(α2)
n
ij,i = (α2)

n
j

(sk)
n
ij,i = (sk)

n
j

(Uk)
n
ij,i · (τ1)ij = (Uk)

n
j · (τ1)ij

(Uk)
n
ij,i · (τ2)ij = (Uk)

n
j · (τ2)ij

and:
ǫi(αk)

n
ij,i(ρk)

n
ij,i(Uk)

n
ij,i · nij = ǫj(αk)

n
j (ρk)

n
j (Uk)

n
j · nij

hk((sk)
n
ij,i, (ρk)

n
ij,i) + 1/2((Uk)

n
ij,i · nij)

2 = hk((sk)
n
j , (ρk)

n
j ) + 1/2((Uk)

n
j · nij)

2

where : hk(sk, ρk) = ek(Pk(sk, ρk), ρk)+Pk(sk, ρk)/ρk. Setting X = (ρk)
n
ij,i, we must

solve :
ψn

ij,i(X) = 0 (36)

where :

ψn
ij,i(X)

def
=
(

hk((sk)
n
j , X) − hk((sk)

n
j , (ρk)

n
j )
)

+ 1/2((Uk)
n
j · nij)

2

(

(ǫj(ρk)
n
j )2

(ǫiX)2
− 1

)

(37)
The solution is obviously X = (ρk)

n
j when ǫi = ǫj . If ǫi 6= ǫj , we use the following

procedure :

• If (Uk)
n
j · nij = 0, the solution of (36) is X = (ρk)

n
j .

• Otherwise, we compute Xmin > 0 solution of :

X3
min (∂ρk

(hk(sk, ρk))) ((sk)
n
j , Xmin) =

(

ǫj(ρk)
n
j (Uk)

n
j · nij

ǫi

)2

> 0 (38)

Then:

– Either:
ψn

ij,i(Xmin) ≤ 0

In that case, the equation (36) admits two solutions X− ∈]0, Xmin] and
X+ ∈ [Xmin,+∞[. The final solution is X = X− if (ρk)

n
j ≤ Xmin, and

X = X+ if Xmin ≤ (ρk)
n
j .

– Otherwise, (36) has no solution. We enforce in that case : X = Xmin,
thus minimizing (ψn

ij,i(X))2.
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[20] Kröner D., Le Floch P., Thanh M.D., ”The minimum entropy principle
for compressible fluid flows in a nozzle with discontinuous cross section”, Math.
Mod. Num. Anal. , vol. 42(3), pp. 425-443, 2008.

[21] Kröner D. , Thanh M.D., ”Numerical solution to compressible flows in
a nozzle with variable cross-section”, SIAM J. Numer. Anal. , vol. 43(2),
pp. 796–824, 2006.

[22] M. Valette and S. Jayanti, ”Annular dispersed flow calculations with
a two-phase three field model”, European Two phase Flow Group Meeting,
Norway, internal CEA report DTP/SMTH/LMDS/2003-085, 2003.

International Journal on Finite Volumes 33


