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Abstract

Cavitation damaging is investigated by simulation of the model problem

of a single gas bubble in a compressible liquid collapsing near the surface

of an elastic solid wall. The three-phase system is described by the com-

pressible Euler equations supplemented by the stiffened gas law for both

fluids, a non-conservative evolution equation for the gas fraction charac-

terizing the liquid-gas interface and the elastodynamical equations for a

linear-elastic solid. The fluid model and the solid model are coupled by

transition conditions at the fluid-structure interface.

The fluid equations are discretized according to Saurel and Abgrall and

for the elastodynamical equations a finite volume discretization is applied.

These numerical methods are coupled by a weak coupling strategy. The

numerical results exhibit von Schmidt waves in the structure as well as

the fluid. As possible explanation for cavitation damaging the von Mises

yield criterion is evaluated.

Key words : compressible two-phase flow, linear-elastic solid, weak cou-

pling.

1 Introduction

The formation and collapse of vapor bubbles in a liquid is called cavitation. Although
pressure waves emitted during the process of cavitation development and the collapse
of cavities are known to damage adjacent solids — as was already conjectured by

1This work has been performed with funding of the German Research Council (DFG) by grant
MU 1422/5-1.
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Lord Rayleigh [58] — the mechanisms causing the damage of the solid are far from
being completely understood.

Cavitation may be induced by a pressure drop in the liquid below vapor pressure
due to local acceleration of the liquid flow. In this case, the liquid bursts at impuri-
ties or cavitation nuclei and creates a free surface filled with gas and/or vapor – the
bubble. The composition of the bubble content depends on the previous situation
of the liquid as well as the magnitude and the time scale for the pressure drop. Due
to changes in the flow field, the pressure in the liquid surrounding the bubble may
increase again causing its collapse. If the collapse takes place next to a surface of a
solid structure, flow velocity and pressure fields become asymmetric and a liquid jet
is developed either directed towards or away from the boundary, depending on the
compliance of the solid as well as the stand off distance of the bubble. The processes
taking place in the interior and exterior of the asymmetrically collapsing and oscil-
lating bubble as well as the prediction of onset and extent of cavitation damage are
still subject of theoretical and experimental research. However, the small time and
space scales as well as the complicated, not fully clarified, dynamical processes pose
a challenge for theoretical, numerical and experimental investigations. Especially
advanced numerical investigations are needed to provide information about the ra-
diated pressure wave, the jet and the highly transient flow phenomena in the fluid
as well as the mechanical loadings of the structure surface initiating tension waves
within the solid. Of particular interest are pressure and flow velocity fields in the
liquid phase and shear stresses and deformation velocities inside the solid to clar-
ify the question if breaking points are exceeded. Similarly, advanced experimental
investigations are needed for comparisons.

Motivation The investigation of the dynamics of cavitation bubbles and their
interaction with a compliant wall is of special interest in different real world applica-
tions arising, for instance, in engineering, medical applications and biology such as
cavitation erosion of under water structures [52, 8, 56], lithotripsy and sonoporation
[53, 54, 33], and cavitation–enhanced ablation of materials, e.g. biological tissues
[13, 14]. In this context the investigation of the transient behavior of cavitation
structures and their interaction with an adjacent elastic or elastic/plastic structure
can be helpful to improve the resistibility of underwater structures such as ship pro-
pellers and ship walls against strong pressure waves or to optimize medical laser or
lithotripter applications with regard to collateral damage to sensitive tissue struc-
tures in the vicinity of the laser focus or to its sonoporation capabilities for drug
delivery.

In the past four decades, numerous experimental investigations with laser-induced
cavitation bubbles have been performed. Recently, Lauterborn and Kurz [40] sum-
marized the development of the experimental investigations in their extensive survey.
Here we briefly sketch some of the results. For details we refer to [40] and the refer-
ences listed therein: thanks to advanced measurement techniques, e.g. particle-based
velocimetry [38] and shadowgraph or Schlieren imaging using high-speed cameras,
new light was shed on the intricate interaction of a bubble with a neighboring bound-
ary. Several effects have been observed in the collapse of a single, initially spherical
bubble, such as the indentation of the bubble wall opposite to the solid surface
and the development of a liquid jet directed towards the wall [52, 8, 39], the emis-
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sion of pressure waves into the liquid when the bubble is collapsing, the generation
of a counter-jet directed away from the structure [66], the formation of a vortex
ring around the toroidal bubble developing after the jet penetration followed by the
breakup of the toroidal bubble into a swarm of tiny bubbles that also emit waves
when collapsing [63, 56] and bubble movement towards the wall caused by Bjerknes
forces.

Although all these effects have been known for a long time now, their influence
on cavitation erosion is still under discussion. One problem is the lack of measure-
ment data that typically are available at very few isolated points only which can
be reached by measurement techniques without disturbing the dynamical processes.
Informations concerning the transient behavior of the content of the bubble is not
directly accessible. Pressure and temperature distributions can only be estimated
by analyzing the sound and light emission into the liquid phase.

By dynamical comparison of experimentally observed phenomena only conjec-
tures can be made based on the causal connection. Here numerical simulations
of the bubble–boundary interaction could yield a valuable contribution to a better
understanding of the complicated dynamics by providing pressure contours and ve-
locity vectors in the liquid surrounding the bubble which are not easily accessible
by experiments, and also providing information on the gas state. However, many
of the numerical results obtained within the last four decades have been based on
strongly simplifying models only, as typically assuming incompressibility of the liq-
uid and neglecting viscosity and heat conduction effects. Even nowadays the bubble
dynamics is frequently modeled using potential flow [9], where the gas state is not
described by dynamic equations but is assumed to be spatially constant, or a ho-
mogeneous pressure state is assumed that is inserted into the dynamic conditions
at the bubble wall. To solve the equations of potential flow, typically the boundary
integral method is used because of its high performance which is very appealing
with respect to computational aspects. So on one hand this approach formed an
applicable way to simulate relevant time scales for the very transient processes but
on the other hand it cannot be extended to more realistic flow descriptions because
of mathematical limitations of the potential ansatz.

Sharp Interface Model. Due to the development of more advanced numerical
concepts and more powerful computer hardware, attempts have been made during
the past two decades to take into account the compressibility of both the liquid
and the gas phase as well as the dynamical changes of the gas inside the bubble
[70, 18, 64, 67, 51]. For this purpose, systems of balance equations have to be
formulated for both phases supplemented by material laws. The two phases are
coupled at the phase interface via jump conditions.

For the numerical simulation of two–phase immiscible flows in compressible flu-
ids, the literature distinguishes between the Lagrangian and the Eulerian approach.
The Lagrangian framework is characterized by a tracking ansatz for the interface
during the time evolution. There are mainly three types of such techniques: (i) parti-
cle methods, e.g., Smooth Particle Hydrodynamics, where the movement of particles
is simulated [47, 22], (ii) front tracking methods where the underlying discretization
undergoes a deformation due to the movement of the interface [32, 15, 37], and (iii)
marker methods, e.g., Marker and Cells [69], Volume of Fluid [29], where the dis-
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cretization is fixed. Typically difficulties arise for complicated topological changes
of the interface. To overcome this obstacle techniques have been developed based
on an Eulerian formulation, i.e., the interface is captured. To distinguish the two
fluid phases within this formulation the underlying equations of motion are supple-
mented with an additional scalar equation indicating the position of the interface
and spatial distribution of the both phases, for instance, a color function [12] or a
level set function [55, 62]. In the past decade several numerical schemes have been
proposed in the literature based on this idea, for instance, the level set method [48],
the hybrid multifluid method [35], the non-conservative scheme of Saurel and Ab-
grall [61], the Ghost Fluid Method [25, 68, 24], the two-flux method [3, 2] and the
Lagrange-projection scheme [5].

Recent investigations [4, 5] show that not all of these approaches are useful for
the numerical investigation of the collapse of a single laser-induced cavitation bub-
ble. The reason for this might be the challenges imposed by the problem: due to
bubble oscillations the bubble radius may vary by several orders of magnitude. In-
stabilities at the bubble interface occur because of the tremendous change of acoustic
impedance. Moreover, the interface velocity may become supersonic in the bubble
collapse which causes very small time steps. Therefore the numerical simulation of
these problems can only be performed using robust and efficient schemes that allow
for very high resolution in space and time to obtain sufficient accuracy.

Fluid-Structure Interaction. So far, the dynamic processes inside the solid
have been investigated mathematically and numerically only by a few groups. How-
ever, the investigation of the transient distribution of stresses is important to un-
derstand the cause of the observed damaging by comparisons with breaking points
of the material. In order to investigate numerically cavitation erosion, the model of
immiscible, two-phase compressible fluids has to be coupled with a model for elastic
or elastic/plastic solids. In this regard, only few results are reported in the litera-
ture. Duncan and Zhang [23] model the elastic solid by a membrane that is based on
springs. The results show a significant influence of the dynamic processes inside the
solid on the cavitation problem. In [34] the dynamic behavior of all three phases is
investigated. The authors couple in an alternating way a boundary integral method
approximating the solution for a potential ansatz for both fluids under simplifying
assumptions with an implicit finite element method to determine the stresses and
velocities inside the solid. For axial rotational symmetry Dickopp [18] developed
an explicit finite element Galerkin scheme with flux-corrected transport for the so-
lution of the Euler/Navier-Stokes equations in two space dimensions and time on
unstructured grids. Here surface tension is taken into account, evaporation and con-
densation are neglected. The material interface is considered a sharp interface that
is fitted, i.e., it coincides with a line of a moving mesh. By means of this solver
wave processes at an early stage in a three-phase system have been investigated
[19, 20, 7, 21]. In [64] the interaction between the fluids and an elastic-plastic solid
is numerically investigated. For this purpose an algorithm is developed to couple
two existing codes solving the Navier-Stokes equations for compressible fluids and
the equations for the dynamics of elastic-plastic solids.

More recently there have been numerical investigations performed by Turangan
et al. [65]. Simulations are conducted for a bubble near an aluminum layer with
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planar and notched surfaces, respectively, using a free-Lagrange numerical method
on Voronoi meshes coupled to an elastic-perfectly plastic material model using the
method of radial return. In all simulations using a planar solid surface the aluminum
layers are still in the elastic regime, i.e., material damage observed in experiments
[56] could not yet be confirmed numerically. Only for notched surfaces evidence for
material damage could be found applying a yield criterion to the data in a post-
processing step.

Outline. In Section 2 we summarize the governing equations for a compressible
two-phase flow and a linear-elastic solid. These form two hyperbolic systems of
conservation laws and a non-conservative evolution equation for the gas fraction
characterizing the liquid-gas interface that are coupled by transition conditions at
the fluid-structure interface. The hyperbolic systems are discretized by finite volume
schemes and a non-conservative upwind discretization is applied to the evolution
equations for the gas fraction. The discretizations for the fluid and the structure are
coupled by a weak coupling strategy that is described in Section 3. The resulting
scheme is then applied to the numerical simulation of a collapsing spherical bubble
next to a planar elastic wall. In Section 4 we discuss two issues, namely, (i) von
Schmidt waves that occur in the structure as well as in the fluid due to the fluid-
structure interaction and (ii) cavitation damaging characterized by the von Mises
yield condition.

2 Mathematical Models

In this section the governing equations modeling a compressible two-phase fluid and
an elastic solid are summarized, namely, the Navier-Stokes equations and the linear
elastodynamical equations, respectively. Neglecting viscosity and heat conduction
in the fluid and displacements of the structure these systems are hyperbolic and can
be written in conservative form. They are coupled at the fluid-structure interface by
transition conditions. The liquid-gas interface is characterized by the gas fraction
that is evolved in time by a non-conservative upwind discretization.

2.1 Two-phase Fluid Model

The two-phase flow is modeled by the compressible Navier–Stokes equations using
the ansatz of a sharp interface Γ separating the liquid phase and the gas phase

∂

∂ t
ρ+ div (ρv) = δΓ,ε(d) ṁT nΓ, (1)

∂

∂ t
(ρv) + div (ρvT v + p I) = div (τ v) + δΓ,ε(d) γ κnΓ, (2)

∂

∂ t
(ρE) + div (ρv (E + p/ρ)) = div (τ v v − q) + δΓ,ε(d) (γ κvT + qTlat)nΓ (3)

using mass density ρ, momentum ρv and total energy ρE. Here p, τ v and q
denote the pressure, the tensor of deviatoric stresses and the heat flux, respectively.
Furthermore, γ is the surface tension, κ the mean curvature of the interface that
reads κ = r−1I in the special case of a sphere, d the normal distance to the front, δΓ,ε
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a smoothed Dirac delta function and nΓ the unit outward normal vector at the front.
The surface tension term is considered to be a force concentrated on the interface.
Optionally applied models for condensation and evaporation at the bubble interface
describe the mass flow rate ṁ as an additional transient variable along the phase
interface. In case of such mass exchanges between the liquid and the gas also an
energy transfer between the two phases is caused that has to be taken into account
in the energy balance by the so-called latent heat flow qlat = L ṁ, where L denotes
the latent heat. Since our interest is in bubbles with a small diameter, we neglect
effects of gravity.

The smoothed Dirac delta function δΓ,ε is unity inside a layer of thickness ε near
to the interface Γ and vanishes outside a 2ε-layer blending smoothly between the
layer and the far field. Typically ε is chosen proportional to the discretization, i.e.,
δΓ,ε tends to the Dirac delta function δ0 in the limit. Due to the finite thickness of
the layer the continuum mechanical jump conditions at the phase interface can be
derived as a contact discontinuity with a change of the material:

[ρ v] = ṁT nΓ,

[ρv v + (p I− τ v)nΓ] = γ κnΓ, (4)

[ρE v +
(
vT (p I− τ v) + qT

)
nΓ] = (γ κvT + qTlat)nΓ,

where [f ] := fliquid − fgas denotes the jump of a quantity f across the interface.
The normal component of the relative velocity at the interface is determined by
v = (v−vΓ)T nΓ with vΓ the interfacial velocity. Assuming that the mass of the gas
phase is negligibly small in comparison to the mass of the liquid, we deduce from
the first jump relation in equation (4) for the normal component

vΓ nTΓ = vnTΓ + ṁT nΓ/ρliquid, (5)

The system (1)-(3) has to be closed by a pressure law. In this work, we consider
the stiffened gas law suggested in [1, 16]. It reads

p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe− γ(ϕ)π(ϕ), (6)

where the two phases (here gas and liquid) are distinguished by an additional field
variable ϕ. Observe that with π = 0 a standard perfect gas law is recovered. In a
similar way, the material parameters of the two phases are distinguished.

In Section 4 we are interested in the collapse of a laser-induced cavitation bubble
near to an elastic solid. Therefore the flow model (1)-(3) is further simplified: surface
tension and phase transition may become important when the bubble reaches its
minimum size in the collapse. However the collapse time is very short. Hence,
these effects are assumed to have only a small influence. For the surface tension
this was investigated in [51] for a cylindrical bubble. Furthermore viscosity and
heat conduction are neglected. These dissipative effects only affect the states in the
instant of shock focusing in the bubble center according to Guderley’s similarity
solution for spherical compression waves, cf. [26], but merely little effects on the
bubble collapse are expected based on previous investigations in [27]. Viscosity
might be significant for the collapse of large bubbles as has been verified by numerical
studies in [57], where thermal effects on the bubble rebound are discussed.
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Moreover, in Section 4 the assumption of axial symmetry is reasonable for the
investigated problem of a collapsing single spherical bubble next to an elastic solid.
Therefore the system of governing equations is transformed from Euclidean to cylin-
drical coordinates r, z and φ. Because of the axial symmetry all partial derivatives
with respect to the angle coordinate φ vanish. Due to the coordinate transformation
Christoffel symbols are introduced resulting in a geometrical source term. Then the
quasi–two–dimensional formulation of the compressible two-phase Euler equations
reads:

∂

∂ t
(rU) +

∂

∂ z
(rFz(U)) +

∂

∂ r
(rFr(U)) = S(U) (7)

with

U =


ρ
ρvz
ρvr
ρE

, Fz =


ρvz

ρv2
z + p
ρvzvr

vz(ρE + p)

, Fr =


ρvr
ρvrvz
ρv2
r + p

vr(ρE + p)

, S =


0
0
p
0

 . (8)

2.1.1 Evolution of phase boundary by gas fraction

In the following the phase indicator ϕ is identified with the gas fraction. We define
that ϕ = 0 and ϕ = 1 correspond to pure liquid and pure gas, respectively. Since
we are interested in very high speed flows and very short observation times, phase
transition is neglected, i.e., there is no mass transfer between the two fluids. Thus
the gas fraction obeys a homogeneous transport equation, i.e., its material derivative
vanishes,

Dϕ

D t
=
∂ ϕ

∂ t
+ vz

∂ ϕ

∂ z
+ vr

∂ ϕ

∂ r
= 0. (9)

If at initial time t = 0 the fraction ϕ takes only the values 0 or 1 characterizing the
bubble shape, it will retain its value for t > 0. Thus there is no physical mixing
in the continuous model. However, the numerical model will introduce artificial
mixture zones where 0 < ϕ < 1 leading to some difficulties which are discussed in
[50, 51].

To study only the continuous model, it would be sufficient to provide the values
of the material parameters γ and π for ϕ = 0 or ϕ = 1 in the pressure law (6).
But because of the numerical mixture, it is necessary to interpolate γ and π for
0 < ϕ < 1. An arbitrary choice of interpolation would lead to numerical difficulties
that are studied in many works, see for instance [1]. A linear interpolation of the
parameters β1 = 1/(γ−1) and β2 = γπ/(γ−1) has been found to be a useful ansatz,
i.e.,

β1(ϕ) = ϕβ1(1) + (1− ϕ)β1(0), β2(ϕ) = ϕβ2(1) + (1− ϕ)β2(0). (10)

The mixture pressure law coefficients γ(ϕ) and π(ϕ) are then obtained from the
reverse relation, i.e.,

γ(ϕ) = 1 + 1/β1(ϕ), π = β2(ϕ)/(1 + β1(ϕ)). (11)

For pure water and air the material parameters γ and π are listed in Table 1.
Here the minimal pressure for the pure liquid is deduced from the speed of sound
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Gas Liquid

γ - 1.4 7.15
π Pa 0 3×108

Table 1: Material coefficients.

c2 = γ (p + π)/ρ, where we choose cl = 1500 m/s, γl = 1.1, ρl = 1000 kg/m3 and
pl = 105 Pa. Usually in the stiffened gas model for a liquid, higher values of γl
are proposed as in [16]. However, smaller values for γl result in a higher minimal
pressure πl and, hence, the variation of the sound speed in the liquid is smaller.

2.2 Linear Elastic Solid Model

The structure model can be derived from the continuum mechanical conservation
principles for densities of mass, momentum, angular momentum and energy of a
solid. Assuming symmetry of the stress tensor the balance of the angular momen-
tum is equivalent to the conservation of momentum. Because of the very short
observation times in the experiments of laser-induced cavitation bubbles, the solid
temperature remains constant and, hence, the heat flux is negligible. Therefore the
balance of energy decouples from the other conservation laws and has not to be
taken into account to describe the mechanical behavior of the structure as explained
in the following. This simplification does not influence the flow of the adjacent liq-
uid, although the fluid and the solid are coupled at the fluid-structure interface by
the jump conditions for contact discontinuities, see Section 2.3: the conservation of
energy at the fluid-structure interface leads to an equation containing the jump of
the heat fluxes and the shear stresses acting in normal direction to the contact line.
Therefore the temperature does not arise explicitly within the solid side of the jump
relation but only by the heat flux. Since the heat flux is neglected, the tempera-
ture of the structure merely arises in the energy balance in this media without any
coupling to the other equations of the system, i.e., the temperature as well as the
energy balance have not to be taken into account within the solid to obtain a closed
system of equations.

Furthermore, as a consequence of the arrangement of the molecules in the shape
of a crystal grid, solid materials are characterized by the fact that variations of
the density are essentially smaller than within a fluid. Therefore the mass balance
is neglected and a constant solid density is inserted into the momentum equation
considered in the following:

Thus the system of conservation laws for the structure reduces to Newton’s law
in its general formulation:

Dρv

Dt
= divσ, (12)

with ρ the density of the solid, σ the shear stress tensor in the solid and v :=
∂ u/∂ t the deformation velocity defined by the displacement vector u. The material
derivative of some quantity f is defined as

Df

Dt
:=

∂ f

∂ t
+ vT · ∇f. (13)
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Note that we distinguish the variables of the solid from their counterparts in the
fluid by a bar. The absolute values of the deformation velocities are supposed to
be so small such that the material derivatives may be approximated by partial time
derivatives, i.e., we may neglect displacements of the structure:

Df

D t
≈ ∂ f

∂ t
. (14)

Thus, with a constant density, the momentum equation (12) simplifies to

ρ
∂ v

∂ t
= divσ. (15)

In order to close equation (15), we have to provide an equation for the stress ten-
sor. Assumptions concerning symmetry, homogeneity and isotropy of the structure
behavior allow to reduce the original 81 components of the common continuum me-
chanical ansatz for the nine components of the stress tensor as linear functions of the
nine components of the strain tensor. Hooke’s linear ansatz for the relation between
the stress tensor and the deformation tensor states a reasonable model for an elastic
behavior of a homogeneous and isotropic material under the assumption of small
deformations:

dσ = λ tr(d ε) I + 2µd ε (16)

using the trace operator tr. It characterizes the material behavior under loadings
by the two Lamé-coefficients λ and µ related to Poisson’s ratio and the strain tensor
ε = 1

2(∇u+(∇u)T ). For small deformations as assumed here and neglecting plastic
deformation, a geometrical linearization neglects quadratic or higher order terms of
the deformation gradient in the equation for the strain tensor, i.e., we assume a linear
elastic material behavior. Then the strains are linear functions of the gradient of
the deformation velocities, i.e., d ε = ε and tr(∂ε∂t ) I = divv I in (16), resulting in
Hooke’s law as a linear stress-strain relation. Differentiation of Hooke’s law with
respect to time then provides

∂ σ

∂ t
= λ div (v) I + µ

(
∇ (v) + (∇ (v))T

)
. (17)

The equations (15) and (17) form a system of linear, hyperbolic differential
equations of first order for the deformation velocities v and the components of the
stress tensor σ that can be written in divergence form

∂U

∂ t
= div (Fx(U),Fy(U),Fz(U)) (18)

with

U =



vx
vy
vz
σxx
σyy
σzz
σxy
σxz
σyz


, Fx =



σxx/ρ
σxy/ρ
σxz/ρ
ρ c2

1 vx
ρ c2

1 α vx
ρ c2

1 α vx
ρ c2

2 vy
ρ c2

2 vz
0


, Fy =



σxy/ρ
σyy/ρ
σyz/ρ
ρ c2

1 α vy
ρ c2

1 vy
ρ c2

1 α vy
ρ c2

2 vx
0

ρ c2
2 vz


, Fz =



σxz/ρ
σyz/ρ
σzz/ρ
ρ c2

1 α vz
ρ c2

1 α vz
ρ c2

1 vz
0

ρ c2
2 vx

ρ c2
2 vy


.
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Herein, the coefficients c2
1 and c2

2 denote the squares of the dilatation wave velocity
and the shear wave velocity, respectively,

c2
1 =

λ+ 2µ

ρ
, c2

2 =
µ

ρ
and α = 1− 2

(
c2

c1

)2

.

In view of Section 4, where we consider an axial symmetric problem, we rewrite
(15) in cylindrical coordinates where we neglect all derivatives with respect to the
angular coordinate φ. The linear system of elastodynamical equations in quasi-2D
then reads

∂

∂ t
(rU) =

∂

∂ z
(rFz(U)) +

∂

∂ r
(rFr(U)) + S(U) (19)

with

U =



vz
vr

σzz/ρc
2
2

σzr/ρc
2
2

σrr/ρc
2
2

σφφ/ρc
2
2

, Fz =



σzz/ρ
σzr/ρ
vz
vr
αvz
αvz

, Fr =



σzr/ρ
σrr/ρ
αvr
vz
vr
αvr

, S =



0
−ρ/σφφ

0
−vz

(α− 1)vr
(1− α)vr

 .

(20)

2.3 Transition Conditions at the Fluid-Structure Interface

At the fluid-structure interface Γ the fluid state U and the solid state U are coupled
by transition conditions and kinematic conditions according to (4). These coincide
with the jump conditions for a contact discontinuity that are derived in continuum
mechanics. In case of a viscous flow neglecting phase transition and surface tension
these read

−p+ nT
Γ
τ v nΓ = nT

Γ
σ nΓ, nT

Γ
τ v tΓ = nT

Γ
σ tΓ, v = v. (21)

Here nΓ and tΓ denote the normal and tangential vector with respect to the material
interface Γ. Neglecting viscous effects in the fluid, i.e., τ v = 0, they simplify to

−p = nT
Γ
σ nΓ, vTnΓ = vTnΓ. (22)

3 Numerical Discretization

Both systems of equations (7) and (19) are discretized by finite volume schemes. For
the evolution equation (9) of the gas fraction a non-conservative upwind discretiza-
tion is used. The fluid-structure coupling is realized by a weak coupling strategy,
where the transition conditions are split into two conditions that are used as bound-
ary conditions for the fluid and the structure, respectively.
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3.1 Finite Volume Discretization of Fluid and Structure Equations

Since both systems of equations (7) and (19) for the fluid and for the solid, respec-
tively, are given in conservative form, finite volume schemes are applied to discretize
these equations. For a structured grid in a two-dimensional spatial space with co-
ordinates z and r, i.e., Vij = [zi− 1

2
, zi+ 1

2
]× [rj− 1

2
, rj+ 1

2
], these discretizations can be

written as

vn+1
ij = vnij −

∆t

‖Vij‖

(
‖Γz,i+ 1

2
,j‖G

n
z,i+ 1

2
,j
− ‖Γz,i− 1

2
,j‖G

n
z,i− 1

2
,j

)
(23)

− ∆t

‖Vij‖

(
‖Γr,i,j+ 1

2
‖Gn

r,i,j+ 1
2

− ‖Γr,i,j− 1
2
‖Gn

r,i,j− 1
2

)
+

∆t|Vij |
‖Vij‖

Snij

with the volumes |Vij | := ∆zi ∆rj = (zi+ 1
2
−zi− 1

2
) (rj+ 1

2
−rj− 1

2
), ‖Vij‖ := rj∆rj∆zi,

rj :=
(
rj+ 1

2
+ rj− 1

2

)
/2 and the interface areas ‖Γr,i,j± 1

2
‖ := ∆zi rj± 1

2
, ‖Γz,i± 1

2
,j‖ :=

rj ∆rj . For a detailed derivation we refer to [4], Appendix A.
Here vnij denotes an approximation of U and U in the cell Vij using numerical

fluxes Gz, Gr and Gz, Gr as well as numerical source terms S and S correspond-
ing to either the fluid or the solid, respectively. The numerical source terms are
approximated by an average over the cell that can be located in its center.

The numerical fluxes are determined by solving Riemann problems at the cell
interfaces. For the approximation of the solution of the flow problem the exact
solver following Colella and Glaz [17] is applied, whereas the Riemann solution of
the solid equations is determined by Roe’s solver [59] that is exact for the linear
system of equations. The spatial accuracy is improved by a quasi-one-dimensional
polynomial reconstruction. For this purpose we apply a linear ENO reconstruction
in each coordinate direction, cf. [28]. For a non-uniform grid this reads for the left
and the right state of the Riemann problem:

vLk = vk−1 + (hk−1 I− τ Ak−1) m (∆vk−1,∆vk) , (24)

vRk = vk − (hk I + τ Ak) m (∆vk,∆vk+1) (25)

using the divided differences ∆vi := (vi − vi−1)/(hi + hi−1) and the minmod
function m componentwise defined by m(a, b) := a if |a| ≤ |b| and m(a, b) := b
elsewhere. Note that the term corresponding to the time discretization τ ensures
second order accuracy in time. The reconstruction technique is either applied to
the primitive variables and the gas fraction (ρ, vz, vr, p, ϕ)T or to the quantities
(vz, vr, σrr, σrz, σzz, σφφ)T in case of the fluid equations and the solid equations,
respectively. Thus the matrix A in (24) corresponds either to the matrix of (7)
written in quasi-conservative form or to the Jacobian of the fluxes in (19) in z- or
r-direction, respectively.

Note that it is convenient to reconstruct pressure and velocity rather than some
other thermodynamical variable because this will preserve homogeneous pressure
and velocity fields. According to the Saurel-Abgrall trick [60] this is essential to
ensure stability of the discretization at the phase boundary.
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Finally the efficiency of these discretizations is enhanced by applying multiscale-
based grid adaptation techniques, cf. [49, 51].

3.2 Upwind Discretization of Gas Fraction

The quantity r ρϕ satisfies the conservative equation

∂

∂ t
(r ρϕ) +

∂

∂ z
(r(ρ vz ϕ)) +

∂

∂ r
(r(ρ vr ϕ)) = 0 (26)

due to the mass conservation in (7) and the gas fraction evolution equation (9). Typ-
ically the discretization of this conservative equation leads to instabilities that will
cause the breakdown of the computation, whereas the non-conservative discretiza-
tion suggested by Saurel and Abgrall leads to successful computations, cf. [1, 60].
However a rigorous mathematical justification of this practical fact is still missing
even in the Cartesian case.

The Saurel-Abgrall approach consists in imposing that the scheme preserves a
constant pressure and velocity field, i.e., the discretization of the flow equations and
the evolution equation of the gas fraction are intertwined. This property is fulfilled
in Cartesian coordinates, but it has to be adapted to the quasi-two-dimensional case
because constant pressure and velocity fields are no more solution of the system
(7). In order to derive a stable approximation in case of quasi-two-dimensional
flows we propose to consider the fully three-dimensional Saurel-Abgrall scheme on
a special mesh that exhibits axisymmetry and also implies rotational symmetry of
the discretized equations. In this way we deduce a two-dimensional scheme for the
quasi-two-dimensional flow problem. The procedure is similar to the one presented
in [6]. Here we briefly recall the resulting non-conservative upwind discretization of
the evolution equation for the gas fraction ϕ.

ϕn+1
ij = ϕnij −

∆t

‖Vij‖

(
‖Γz,i,j+ 1

2
‖v n

z,i,j+ 1
2

(ϕn
i,j+ 1

2

− ϕnij)−

‖Γz,i,j− 1
2
‖v n

z,i,j− 1
2

(ϕn
i,j− 1

2

− ϕnij)
)

(27)

− ∆t

‖Vij‖

(
‖Γr,i+ 1

2
,j‖v

n
r,i+ 1

2
,j

(ϕn
i+ 1

2
,j
− ϕnij)−

‖Γr,i− 1
2
,j‖v

n
r,i− 1

2
,j

(ϕn
i− 1

2
,j
− ϕnij)

)
,

where ϕ, vz and vr denote the gas fraction and the velocity components given by the
solution of the Riemann problem at the interfaces Γr,i± 1

2
,j and Γz,i,j± 1

2
, respectively.

3.3 Fluid-Structure Coupling

For the approximation of the transient two-phase flow problem (7) and the transient
elastic solid model (19) Godunov type finite volume schemes are used. From the
mathematical as well physical point of view the two systems of equations are coupled
at the fluid-structure interface by the transition conditions (22). In the literature
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there are different coupling strategies discussed concerning their embedding into
numerical methods. These differ in the discretization of the transition conditions
and their incorporation into the simultaneous or alternating application of the two
solvers. In case of strong coupling the approximations of both the fluid and the
structure are updated simultaneously within one time step by a monolithic solver
including the complete transition conditions (22) without any splitting technique,
see [30]. Opposite to this, the basic idea of weak coupling strategies, also known as
partitioned approach or Gauss-Seidel method, see [30], consists of the alternating
application of two separate solvers for the fluid and for the solid, respectively, where
each solver uses boundary values provided by the other solver. This procedure is
now to be detailed.

Let Ω and Ω denote the fluid domain and the solid domain, respectively, that
are separated by the fluid-solid interface Γ. In each of these domains we apply the
finite volume discretization (23) either for the inviscid flow problem or for the solid
mechanical problem, respectively. These can be written in compact form

Un+1 = Un + ∆ tRf (Un) , U
n+1

= U
n

+ ∆tRs

(
U
n)
, (28)

where at the boundaries ∂Ω and ∂Ω numerical fluxes are computed incorporating
the boundary conditions. Except for the fluid-solid interface Γ = ∂Ω∩ ∂Ω these are
computed by solving a Riemann problem where the exterior state is either given by
the boundary conditions or extrapolated from the interior of the domain. At the
interface Γ we have to proceed differently, because from a mathematical and physical
point of view the transition conditions (22) have to be fulfilled there for both time
levels n and n+ 1, i.e.,

vT (Un)nΓ = vT (U
n
)nΓ, nT

Γ
σ(U

n
)nΓ = −p(Un) on Γ, (29)

vT (Un+1)nΓ = vT (U
n+1

)nΓ, nT
Γ
σ(U

n+1
)nΓ = −p(Un+1) on Γ. (30)

For this purpose the two discretizations (28) are separated into two approxima-
tions for the solution of two transient initial boundary value problems corresponding
to different systems of equations — one for each solver — , where the transition
conditions (22) are split into two boundary conditions for the flow problem and the
structure problem, respectively. A naive approach would be the explicit coupling,
where for the flow solver we prescribe the normal velocity at time level n along the
interface, i.e.,

Un+1 = Un + ∆tRf (Un) with vTnΓ = vT (U
n
)nΓ on Γ (31)

and the pressure distribution of the fluid along the contact line at time level n
provides boundary values for the normal stress of the structure mechanical problem,
i.e.,

U
n+1

= U
n

+ ∆tRs

(
U
n)

with nT
Γ
σ nΓ = −p(Un) on Γ. (32)

Note that the splitting of the transition conditions (22) along the interface can be
regarded as an operator splitting.
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In (31) and (32) the numerical fluxes at the interface Γ are computed evaluating
the fluxes (8) and (20) in normal direction nΓ, i.e., FΓ = (Fz,Fr)nΓ and FΓ =
(Fz,Fr)nΓ, where for the fluid the normal fluid velocity is determined by the normal
solid velocity and for the solid the normal stress component is determined by the
fluid pressure. All other missing data are taken from the adjacent approximations
of the flow problem or the solid problem, respectively, in the interior of the according
domain. In particular, in our computations presented in Section 4 we always have
nΓ = (1, 0)T . Then FΓ = Fz with vz = vz and ρ, p, vr are the density, pressure and
radial velocity taken from the interior of the fluid. Similarly, we compute FΓ = Fz
with σzz = −p and σzr, vz, vr are taken from the interior of the solid.

U
n

U
n+1

v p v p

U
n

U
n+1

U
n

U
n+1

v

v

v

p

U
n

U
n+11,5,9,...

3,7,...

4,8,...

2,6,...

0

Figure 1: Illustration of explicit coupling (left) and implicit coupling (right).

Since in (31) and (32) we exchange both pressure p and normal velocity vTnΓ

at time level n, see Figure 1 (left), the transition conditions (22) are not satisfied
at the new time level n + 1, i.e., (30) does not hold, resulting in a kinetic and a
dynamic approximation error εk and εd, respectively, at the interface Γ

εk := vT (Un+1)nΓ−v
T (U

n+1
)nΓ 6= 0, εd := nT

Γ
σ(U

n+1
)nΓ+p(Un+1) 6= 0. (33)

Therefore the explicit coupling approach will fail. Instead we prefer an implicit
coupling where we alternately exchange values for the pressure p and the normal
velocity vTnΓ at the contact line. Starting with the fluid problem the implicitly
coupled problem reads:

Un+1,k+1 = Un + ∆tRf

(
Un+1,k

)
with vTnΓ = vT (U

n+1,k
)nΓ on Γ, (34)

U
n+1,k+1

= U
n

+ ∆tRs

(
U
n+1,k

)
with nT

Γ
σ nΓ = −p

(
Un+1,k+1

)
on Γ. (35)

Alternatively, one may start with the solid problem. The system (34) and (35) can be

regarded as a fixed point iteration initialized with Un+1,0 = Un and U
n+1,0

= U
n
.

In the literature the repetition of this procedure for k = 0, 1, . . ., until convergence
is referred to as strong coupling, see [31, 45]. It is illustrated in Fig. 1 (right). In case

of convergence, the fixed point Un+1 = limk→∞Un+1,k and U
n+1

= limk→∞U
n+1,k

satisfies the transition conditions (22), i.e., (30) holds. Due to the explicit time
stepping the numerical fluxes have to be computed only once in the entire domain.
Then one fixed point iteration only requires to update the numerical fluxes near to
the fluid-solid interface and the data in the cells attached to the interface. This
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makes the fixed point iteration costly. Therefore we prefer to use a so-called weak
coupling, see [31, 45], where we perform only one iteration step. Herein the values
for the pressure and the normal velocity at the fluid-solid interface are exchanged
alternately in time. Starting again with the fluid problem the coupled problem then
reads

Un+1 = Un + ∆tRf (Un) with vTnΓ = κ̂nf v
T (U

n
)nΓ on Γ, (36)

U
n+1

= U
n

+ ∆tRs

(
U
n)

with nT
Γ
σ nΓ = −κ̂ns p

(
Un+1

)
on Γ. (37)

Obviously, the transition conditions (22) are not satisfied at the new time level n+1,
i.e., (30) does not hold. The error is in the order of the time step size that is small
for explicit time discretizations. However, due to the alternating time integration
of the schemes, this error is accumulating with increasing number of time steps. In
order to damp the accumulated error we introduce in (36), (37) the parameters κ̂nf
and κ̂ns . Choosing κ̂nf = κ̂ns = 1, then (36), (37) coincides with the first iteration
step of the strong coupling (34), (35). In Section 3.3.2 we will discuss how to choose
these parameters.

The time evolution between levels n and n + 1 of the weak coupling procedure
(36), (37) consists of the four following logical steps after having initialized the data
in the fluid and solid domain.

1. The velocity on time level n as well as the coordinates of the solid grid vertices
along the fluid-solid interface Γ are transferred from the structure solver to
the flow solver.

2. The flow solver executes the computation for one time step according to (36)
using a previously determined time step size ∆t as well as deformation ve-
locities in normal direction vT

(
U
n)

nΓ along the fluid-structure interface Γ
provided by the solid solver as boundary conditions for the two-phase flow
problem.

3. The pressure on the new time level n+ 1 as well as the coordinates of the flow
grid vertices along the fluid-solid interface Γ that may change due to local grid
adaptation are copied first from the flow solver to the solid solver.

4. The solid solver updates the stresses and deformation velocities inside the solid
domain Ω according to (37) using a previously determined time step size ∆t
as well as the pressure values p

(
Un+1

)
along the fluid-structure interface Γ

provided by the flow solver as boundary conditions.

This coupling procedure including the initialization step is sketched in Fig. 2. So
far the coupling of both codes has been realized, where both methods use the same
time step size, i.e., ∆ t = ∆ t. The choice of the time step is discussed later on in
Section 3.3.2

3.3.1 Implementation of weak coupling strategy

The two finite volume schemes approximating the fluid and the solid equations,
respectively, are realized by two different solvers, where each solver has access only
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Figure 2: Weak coupling.

to its own exactly defined segment of the computer main memory. For the data
exchange between the solvers we use the shared memory and semaphores libraries
[44] that offers the opportunity to allocate so-called shared memory segments located
in the main memory which can be used via library functions by several C- or C++-
codes simultaneously. This open source library uses functions of the linux operation
system for the process control and the memory management. The great achievement
of the shared memory library can be seen in a logical abstraction of sophisticated
management activities of the operation system using a programming interface of
objects for the shared memory segments with class functions for the data transfer
and access permission control. Sending and receiving semaphoric signals to allow
and forbid the access to the shared memory segments provides also possibilities to
synchronize both processes similar to strategies for parallel computing and to avoid
data access conflicts. Our implementation is based on four shared memory segments:

• Two segments transfer the boundary data together with geometrical informa-
tions such as the position of the boundary grid vertices or the normal vectors
composed as long data structures; one segment is needed for each direction
of data exchange to prohibit conflicts within the communication procedures.
A write statement for a data update in one of these segments is followed by
setting an allowing semaphore for accesses by the other program. In the other
direction a semaphore for waiting has to protect a read access to prohibit a
data update on the same shared memory segment at the same time.

• Another pair of shared memory segments is needed for the exchange of in-
formations concerning time step sizes, the number of grid points along the
coupling boundary as well as the structure of the data records transferred by
the other two shared memory segments. Again one shared memory segment is
used for each direction of communication. Observe that the adaptation possi-
bility of our numerical scheme in general leads to changes of the number of grid
vertices and cells during the simulation resulting in changes of the structure of
the transferred data records. Thus this other pair of shared memory segments
is needed to inform in advance how many data have to be received.

The data transfer via shared memory is complicated by many facts. For instance,
the copy function of the operation system used by the library only works with static
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arrays of fixed length. However, grid adaptation at the coupling boundary can be
implemented in an appropriate manner using dynamic data structures. Furthermore
the use of semaphores can cause a kind of delay phenomena between writing and
reading statements. Therefore identity numbers at the begin and at the end of the
data records are used as a kind of stamp to ensure that all sent data characterized in
this way are received by the other program, which checks these identifications and
the correct ordering within the communication processes.

Figure 3: Shared memory segments.

In the following we will give an example for the realization of data exchanges be-
tween two processes using functions of the shared memory library as well as different
data structures as illustrated in Fig. 3:

1. Initialization of shared memory segments. Two shared memory segments for
time and data block structure informations and two segments for field data
along the coupling boundary are allocated within each program and accord-
ing objects are created using a library function by one of the two processes
depending on the direction of the data transfer. Estimates for the size of the
allocated segments are based on the size of the coarsest grid for both solvers
as well as the chosen maximal number of refinement levels.
The same library function creates also objects for the previously allocated
segments for its access if the coupled process calls this function without size
specification. So altogether each program can access to two pairs of shared
memory segments. These four shared memory segments are available within
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both C++-codes by four objects equipped with class functions to write the con-
tent of a static array to the corresponding shared memory segment, to copy
from this shared memory segment into a static array and to set semaphores to
control the access permissions to the managed shared memory segment.

2. Determine data size information. Each solver determines the grid vertices
along the fluid-solid interface as well as the resulting structure of the records
for the data transfer along the interface. In particular, the size and the uniform
distance of an intermediate grid for the data transfer are calculated from the
minimal distance of grid nodes on the coupling boundary.

3. Send transfer information. The first index of each of the different blocks within
the data records as well as the initial time zero and a control number to identify
the data set are written to the shared memory segment using a static array.
By this data exchange the other process is informed about the structure of the
data records to be received; the thereby received control number is also used
to identify records within the transfer of the boundary data. A read access to
the updated contents of the shared memory segment is allowed by setting the
according semaphore by the object class function. For each direction of the
communication between the two programs an own shared memory segment for
data structures is used to circumvent communication conflicts.

4. Interpolation. Each solver interpolates the data read from the computational,
locally refined grid along the fluid-solid interface onto an equidistant interme-
diate grid of the previously determined size. Then each of them composes the
data records containing blocks for solid stress components or fluid pressure,
respectively, normal velocities and normal directions and control numbers to
identify the data record within the communication.

5. Data sending. The write class function of the shared memory segment ob-
ject for the field data along the interface transfers the previously composed
data record to this shared memory segment. Again each process uses another
segment for this data exchange to avoid communication conflicts.

6. Data receiving. Using the read class function of the shared memory segment
object the data record of the coupled program is copied from the according
shared memory segment into an array of the own program. The reading pro-
cedure is repeated until a data record with the expected control number is
found. The control number is known as a result of the data exchange pro-
cedure concerning data structure informations using the other pair of shared
memory segments. Then the received data record is split into the different
data blocks and their contents is stored in dynamic fields of the program for a
later evaluation of boundary conditions.

7. Preparing data transfer for next time step. Each process increments its control
number to identify the data sets for the next data transfer.

We conclude this section with two remarks on spatial and temporal interpolation at
the coupling boundary.
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Remark 1: (Spatial interpolation). Properties of the spatial interpolation for
the exchange of field variables are often discussed in the context of coupling methods
using non-matching grids at the interface. In particular, conservation properties or
variational principles of continuum mechanics are of interest. Our investigations us-
ing different interpolation strategies show only small differences in case of high grid
resolution. This also holds true for discretizations with hanging nodes due to local
grid refinement, if the adaptation process is conservative. The results presented in
Section 4 are obtained using the highest possible resolution along the whole coupling
boundary. In this case the intermediate grid coincides with at least one computa-
tional grid of the two solvers along the interface.

Remark 2: (Temporal interpolation). To overcome the assumption of identical
time step sizes for the coupled solvers an additional interpolation with respect to the
time variable is needed. Such an interpolation of the boundary values of one solver
onto the time level of the coupled method ensures the mathematical and physical
accuracy of the transient coupling. However, it also induces a further approximation
error. On the other hand, the higher flexibility concerning the choices of the time
step sizes for both schemes can be used to reduce the approximation errors within
other parts of the computational domain of each medium. We want to investigate
this in the future.

3.3.2 Error reduction of weak coupling

Due to the weak coupling (36) and (37) the transition conditions (22) are in general
not fulfilled at the new time level n + 1, see (33), no matter how we choose the
parameters κ̂nf and κ̂ns . In particular, for κ̂nf = κ̂ns = 1, i.e., the weak coupling (36),
(37) coincides with the first iteration step of the strong coupling (34), (35), an
accumulation of the error with increasing number of time steps can be observed in
computations. In order to reduce the error in the transition conditions, see (33), we
introduced in (36), (37) the damping factors κ̂nf and κ̂ns for the fluid and the solid,
respectively, as additional degree of freedom. The idea is to choose the parameters
κ̂nf and κ̂ns such that the error (33) is locally reduced and the maximal possible CFL
number for a stable integration is attained within the following time integration step.
This procedure is similar to Lagrange multipliers within formulations of mechanical
principles, for instance that of virtual work in [30].

First of all, we notice that so-called von Schmidt waves develop in the liquid
near the fluid-solid interface due to different wave propagation velocities within the
materials. This phenomena will be explained later on in Section 4 in more detail.
Therefore the criterion for the linear stability has to take into account the eigenvalues
of both coupled systems of equations to ensure a stable numerical approximation
of such interface wave phenomena. Otherwise not all possible waves lying in the
region of dependence would be captured by the scheme. Hence, the time step size
∆ t = ∆ t has to fulfill the following two CFL conditions

∆ t

‖V ‖
≤ ν0

λf,max
,

∆ t

‖V ‖
≤ ν0

λs,max
(38)
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with maximal characteristic speeds

λf,max = max{|v|, |v ± c|}, λs,max = max{|c1|, |c2|} (39)

in the fluid and the solid, respectively. Here ν0 denotes an upper bound for the CFL
number for which the linear stability of the discretization is ensured, i.e., ν0 ≤ 0.5
for a standard Godunov type method.

In order to determine the damping parameters κ̂nf and κ̂ns we introduce the actual
CFL numbers corresponding to a time step tn for the schemes on the fluid side and
the solid side of the fluid-structure interface, respectively,

νnf :=
∆ t λnf,max
‖V ‖

, νns :=
∆ t λns,max

‖V ‖
(40)

and define the ratios of maximal and actual CFL number

rnf :=
ν0

νnf
, rns :=

ν0

νns
. (41)

By means of these values we introduce the exponential smoothing

κnf :=
(
rnf
)q1+ 2

π
arctan(rf )(q∞−q1)

, κns := (rns )q1+ 2
π

arctan(rs)(q∞−q1) (42)

with empirical exponents q1 = 0.95 and q∞ = 0.5. Note that for q1 = q∞ = 1 we
have κnf = rnf and κns = rns , respectively. For damping purposes we finally average
the damping parameters over the last two time steps to avoid an oscillating behavior
of the damping parameters, i.e.,

κ̂nf :=
1

2
(κnf + κn−1

f ), κ̂ns :=
1

2
(κns + κn−1

s ). (43)

Using these parameters in our computations we observed a significant reduction
of the error (33). Evidence for this is given by the numerical results presented in
Section 4.

4 Numerical Simulation

For the investigation of the mechanism of cavitation damaging we have simulated
numerically the collapse of a single cavitation bubble near the surface of a dynam-
ically reacting, linear elastic solid, see Fig. 4. Here the focus of our interests is on
the effects of the dynamical processes within the structure that are initiated by the
interaction with the adjacent two-phase flow of a collapsing bubble. In particular,
we are going to analyze whether the stress states exceed breaking points of the solid
material. This might provide an explanation for cavitation erosion observed in ex-
periments.
Computational setup. The bubble is a sphere with radius r = 1 mm separating
the gas inside from the surrounding liquid. The distance between the bubble ori-
gin and the solid surface is twice the radius of the cavitation sphere, i.e., d = 2r.
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Figure 4: Configuration of a gas-filled bubble in an liquid environment next to an
elastic solid.

A high pressure gradient due to the gas pressure of 2118 Pa and the liquid pres-
sure of 5× 107 Pa causes the collapse of the bubble. The ambient liquid density of
1000 kg/m3 and the gas density of ρgas = 0.0266 kg/m3 correspond to a sound speed
of about 1480 m/s, and 340 m/s, respectively. For a detailed discussion for this choice
of initial data we refer to [50]. For the solid material we choose steel characterized by
the density ρ = 7800 kg/m3 and Young’s modulus E = 210× 109 Pa leading to the
velocities c1 = 5990 m/s and c2 = 3458 m/s for the dilatation waves and for the shear
waves, respectively. Initially we assume that the forces between the liquid and the
adjacent structure are in equilibrium. Therefore we set the stress component orthog-
onal to the contact line identically to the liquid pressure, i.e., σzz = −p. All three
phases are supposed to be at rest. The computational domain consists of two parts
Ω = [−0.04, 0.01] × [0, 0.05] m2 and Ω = [0.01, 0.06] × [0, 0.05] m2 for the solid and
the fluid, respectively, that are connected at the contact line Γ = {0.01} × [0, 0.05].
These are discretized by 16 × 16 and 4 × 4 cells on the coarsest grid, respectively.
The use of up to L = 9 refinement levels can lead to a resolution of 16× 2L = 8192
cells in each spatial direction for the solid grid and up to 4 × 2L = 2048 cells con-
cerning the flow discretization. The fluid solver and the solid solver use the same
time step size ∆ t = ∆ t = 10−10s which fulfills the linear stability criterion for both
methods with respect to the finest mesh. The efficiency is significantly improved
by grid adaptation that is performed inside the adaptation region determined by a
circle with center point in [0.01, 0.0] m and radius 0.01 m, whereas outside we use
the coarse discretization corresponding to L = 0. To avoid metric jumps at the
boundary of the adaptation region the grid is graded near to its boundary.

The computations were performed on the system 8×4 core AMD Opteron 8356,
2.3 GHz, 256 GB Ram. The computational time for the presented simulation of a
physical time interval of about 65 × 10−6 seconds was about six weeks. This large
time consumption was caused by (i) the high resolution that requires small time
steps due to the explicit time stepping and (ii) the fact that we have been using the
same time step for both the fluid solver and the solid solver.

Bubble collapse. The collapse of a bubble near to a rigid wall without fluid-
structure interaction has been investigated for the present scenario in previous work
[51, 4]. We will briefly summarize the dynamical process. Later on we will then
discuss in detail additional effects caused by the fluid-structure interaction. Due to
the lower pressure inside the bubble a rarefaction wave is emitted into the liquid and
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a shock wave runs towards the bubble center. The rarefaction wave is being reflected
at the solid surface. The reflected wave moves towards the bubble. At the proximal
side of the bubble that is nearest to the wall it is partially reflected into the liquid
and partially transmitted into the bubble because of the lower acoustic impedance of
the gas. Inside the bubble the transmitted wave interacts with the shock wave that is
being reflected in the bubble center, while in the liquid the wave interaction process
between the solid and the bubble continues where the wave strength decreases with
each interaction. Due to the shock wave the gas inside the bubble is accelerated
towards the bubble center, i.e., the bubble starts shrinking. However, due to the
wave interactions at the bubble interface, the bubble surface is more accelerated at
the distal side, i.e., the part of the bubble farthest from the wall. This results in an
indentation of the bubble surface at the distal side. A liquid jet is forming that is
directed towards the wall. This water jet penetrates the bubble at the proximal side
and hits the wall. The remaining toroidal bubble starts a translational movement
towards the wall.

In principle, the wave dynamics is very similar when performing the same com-
putation with an elastic solid instead of a rigid solid. This is true as long as Young’s
modulus characterizing the elastic material is large enough, e.g. steel. Otherwise
there might be a phase change during the reflection at the wall. The development
of the bubble shape in case of an elastic wall is presented in Figs. 5, 7, 9, 11 and
13 exhibiting the rarefaction waves and the shock wave in the liquid and the gas,
respectively, the shrinking of the bubble, the collapse of the bubble and its pene-
tration by the water jet directed towards the solid and the so-called water-hammer
shock emitted into the liquid and finally the elongation of the bubble when moving
towards the wall. Here the absolute value of the density gradient at different time
steps is plotted using a logarithmic scale. In these figures rarefaction waves and
shock waves can be observed that are emitted from the bubble wall into the liquid
or into the gas and are reflected at the fluid–solid interface and the bubble interface.
When these waves hit the surface of the structure they cause a transient change of
load and, hence, stress and deformation waves develop in the structure, see Figs. 6,
8, 10, 12 and 14. Reversely, the waves in the structure interact with the two-phase
flow via the boundary condition for the flow velocity in normal direction causing von
Schmidt waves in the fluid. In the following we will address in detail the additional
phenomena resulting from the fluid-structure interaction.

von Schmidt waves. For most solid materials used within technical applica-
tions the propagation speed for dilatation waves as the fastest phenomena inside the
structure is significantly larger than the sound-propagation velocity of the adjacent
liquid. For instance, the speed of the dilatation waves for steel are about 6000 m/s
whereas shock and rarefaction waves in water at rest propagate with about 1500 m/s
at room conditions. This difference in the wave speeds at both sides of the fluid-solid
interface causes so-called von Schmidt waves that can be observed in Fig. 5: com-
pression or rarefaction waves emitted from the bubble propagate in the liquid with
the corresponding speed of sound toward the liquid-structure interface. When such a
wave front hits the surface of the solid, the coupling algorithm transfers the wave by
changes of the normal stress component into the solid leading to stress waves inside
the solid. Depending on the direction of molecular motion the initiated phenomena
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propagates either with the speed for the shear waves or that for the dilatation waves,
respectively, which are both larger than the sound speed in the adjacent liquid. The
stress waves in the solid are always accomplished by changes of the deformation ve-
locity which arise within the reverse coupling as a boundary condition for the liquid
along the fluid-structure interface. These changes of the boundary values for the
velocity in normal direction with respect to the coupling boundary initiates a new
wave within the liquid – the von Schmidt wave. At the interface the transversal
wave in the solid causes also motions of the molecules parallel to the wave front, i.e.,
orthogonal to the coupling boundary, because of the higher number of the degrees of
freedom at the boundary. These motions normal to the interface are transferred to
the flow via the kinematic transition condition moving faster than the sound speed
in the liquid. This causes a von Schmidt wave in the liquid that looks similar to
a Mach cone and a triangle in three and two space dimensions, respectively, as a
consequence of the supersonic perturbation of the fluid flow. This von Schmidt wave
can be seen in Fig. 5. It is a special wave phenomena caused by the interaction of
two dynamical systems, see [46].

On the structure side of the interface the slower propagation of the pressure
loads in comparison with the stress waves causes a circulation of the displacement
velocities as illustrated in Fig. 6. There another von Schmidt wave develops in the
structure that connects the motions in transversal direction induced by the dilatation
waves with the slower shear wave.

When the computation proceeds these two phenomena of von Schmidt waves
in the liquid and the circular orientation of the structure displacements near the
coupling boundary characterize every change of loadings at the solid surface as
consequences of bubble wall motions. Hence, Fig. 7 shows a system of interacting
wave fronts and von Schmidt waves in the fluid whereas the diameters of the eddies
for the displacements become larger in the solid when the stress wave fronts move
away from the axis of symmetry as presented in Fig. 8.

In order to verify the adherence of the kinematic transition condition we plot the
velocity component normal to the interface in the fluid and the solid, see Fig. 15.
Analogously the continuity of the normal forces across the coupling boundary can
be investigated. For this purpose we present in Fig. 16 fluid pressure as well as the
normal stress component σzz of the structure.

Material damage. Since the linear elastic model, see Section 2.2, does not
account for plastic deformation, we cannot directly conclude from our computa-
tions on material damage. However, by a post-processing analysis we can analyze
whether the pure elastic range of the solid material has been exceeded during the
computation. This may be considered as an explanation of cavitation damaging. For
this purpose the comparison of the solid stress states with the von Mises stress is
typically used as a criterion for isotropically modeled and work hardening materials
as metal or steel. This criterion is based on the hypothesis that the material yields
irreversible and breaks if the yield stress exceeds certain tolerances, see [46]. Re-
garding the general case of a solid stress state in three space dimensions the so-called
von Mises comparison stress σvM :=

√
3 I2, see [36, 41], is proportional to the square

root of the second invariant I2 = 1
2σ

d : σd of the stress deviator σd := σ− 1
3 tr (σ) I.
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In terms of cylindrical coordinates the von Mises comparison stress reads, see [42],

σvM =

√
1

2

(
(σzz − σrr)2 + (σzz − σφφ)2 + (σrr − σφφ)2

)
+ 3σ2

zr. (44)

The von Mises comparison stress is used within the yield criterion. One of the
most frequently applied approaches for a yield criterion used in the context of the
materials considered here, see [36, 41, 42], is based on the difference between the
von Mises comparison stress and the yield stress Y (λ):

Φ(σ, λ) := σvM − Y (λ). (45)

Herein λ ≥ 0 denotes the plastic multiplier indicating whether the stress state lies
within the pure elastic region of the stress-strain relation, i.e., λ = 0, or a plastic
part has to be taken into account by λ := µ

µp
− 1 > 0 using the plastic modulus µp,

see [46]. By the yield criterion (45) elastic and plastic deformation can be distin-
guished by Φ(σ, λ) < 0 and Φ(σ, λ) ≥ 0, respectively.
For λ an additional transport equation can be derived leading to a significant com-
putational effort for the application of this yield criterion. To avoid the numerical
approximation of this partial differential equation and, hence, to get only an esti-
mate for the yield boundary of the structure we use the yield strength Y0 as constant
approximation for the yield criterion neglecting the effect of strain hardening, i.e.,

Y (λ) = Y0. (46)

In [65] a much simpler yield criterion based on the same ansatz is used. The ad-
vantage of such simplifications is that the criterion can be directly evaluated based
on the calculated values for the stress components in a post-processing step with-
out solving an additional differential equation. On the other hand this criterion
does not allow to describe the transient development of plastic zones by the correct
propagation speeds but only the spatial directions of their expansion.

The yield strength Y0 depends on the specifications and the state of the steel.
To get an idea whether steel could be deformed plastically due to the waves emitted
in the bubble collapse the post-processing analysis was executed twice using two
values for the yield strength following [71], one for structural steel (Y0 = 250 MPa)
and one for stainless steel (Y0 = 502 MPa). In Figs. 17 to 20 we present the results
of the evaluation of the function Φ(σ)= σvM − Y0 as simplified yield criterion in the
time range 50.0µs to 56.0µs for structural steel (left) and stainless steel (right).
The results show a zone of plastic deformation at the symmetry axis caused by the
impact of the water-hammer shock wave on the solid surface. The initiated stress
waves transport the plastic zone in the direction of both cylindrical coordinates r
and z. The increase of its area is accomplished by a decrease of its intensity, i.e.,
the von Mises yield criterion reaches again the elastic region. Altogether an almost
spherical region with center point close to the corner of the symmetry boundary
and near to the coupling boundary exists where the states exceed the yield criterion
indicating that plastic deformation might occur there. There material damage in
the sense of plastic deformation might be expected.
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Note that the von Mises comparison stress σvM exceeds the yield strength Y0

only if the value characterizing structural steel is applied but not for stainless steel.
Using yield strength values of aluminum or copper the yield criterion Φ(σ) then
exhibits large plastic zones within the solid domain that can be observed in Fig. 21
for a long time interval of the simulation. Note, however, that these evaluations
are not consistent with the simulations because the density and the wave speeds of
steel were used by the solid solver. Nevertheless the results indicate that materials
with lower yield strength values are probably damaged essentially by the waves
emitted by the adjacent collapsing cavitation bubble. Simulations using different
parameter settings for the solid density, the speeds of dilatation and shear waves as
well as the yield strength characterizing several materials should improve this kind
of investigations in the future.

Finally we want to emphasize that fundamental assumptions of the applied struc-
ture mechanical model, see Section 2.2, are no longer valid if yield bounds of the
solid material are reached or exceeded. The presented investigations are concerned
with the question whether the plastic region of the stress-strain relation of the solid
material could be reached within the model problem. A realistic description of
plastic effects, transient yield bounds, deforming computational regions and their
interactions with the flow problem needs extensive improvements of the material
model and the numerical algorithms.

5 Conclusion

As a model problem to investigate cavitation damaging the collapse of a single gas
bubble collapsing near to an elastic solid wall is simulated numerically. The transient
three-phase system is modeled by the compressible Euler equations completed by a
stiffened gas law for both fluids, where the liquid and the gas phase are distinguished
by the gas fraction and the elastodynamical equations for a linear-elastic solid. The
two systems of equations for the fluids and for the solid are coupled by transition
conditions at the fluid-solid interface.

The balance laws for fluid and solid are discretized by adaptive finite volume
schemes, whereas for the evolution of the gas fraction a non-conservative upwind
discretization originally developed by Saurel and Abgrall is applied. The latter
prevents pressure and velocity oscillations at the liquid-gas interface.

A weak coupling strategy connects the alternating calculations of the fluid solver
and the solid solver using transient boundary conditions that are updated by the
other solver. The inter-solver communication is realized by a library for shared mem-
ory segments within the main memory of the computer accessible by both codes.
Between the two solvers library functions for write and read access of data struc-
tures as well as for control of semaphores allow to exchange boundary values of
the approximations obtained by the two methods via intermediate grid and spatial
interpolation along the coupling boundary. Stability aspects as well as the imple-
mentation of the code coupling were regarded.

First numerical results show significant effects of the dynamical processes inside
the solid on the bubble collapse and the wave phenomena in the fluid. Shock waves
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emitted from the collapsing bubble cause stress waves inside the structure which ex-
ceed the yield strength of structural steel within an almost spherically shaped region
with its center on the symmetry axis at the solid surface. Such phenomena might be
an explanation for cavitation damaging. Further investigations using several param-
eter settings for different solid materials are intended to identify situations where
the plastic region of the stress-strain relation is reached. A realistic description of
plastic effects needs extensive improvements concerning the structure modeling as
well as the numerical method.

So far the coupling procedure is realized under the very restricting assumptions
that both solvers use the same time step size and the size of an intermediate grid
for the data transfers has to take into account the discretizations of both coupled
methods. In the future we want to relax these assumptions.

Due to severe numerical dissipation inherent in the stiffened gas approach, the
liquid-gas interface is significantly smeared and a numerical phase transition zone
can be observed in the computations, cf. [50, 51]. Here the ghost fluid method
turned out to give much better results at the same resolution level for the problem
of a laser-induced collapsing bubble. We therefore will replace the Saurel-Abgrall
approach by the ghost fluid method, cf. [68, 24], that has already been implemented
and validated by numerous computations presented in [4].
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Figure 5: Density gradient magnitude (logarithmic scaling) at t = 16.6 µs.

Figure 6: Pathlines in the solid (left) and the fluid (right) and fluid density at
t = 16.6µs.
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Figure 7: Density gradient magnitude (logarithmic scaling) at t = 33.1 µs.

Figure 8: Pathlines in the solid (left) and the fluid (right) and fluid density at
t = 33.1 µs.
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Figure 9: Density gradient magnitude (logarithmic scaling) at t = 40.0 µs.

Figure 10: Pathlines in the solid (left) and the fluid (right) and fluid density at
t = 40.0 µs.
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Figure 11: Density gradient magnitude (logarithmic scaling) at t = 50.0 µs.

Figure 12: Pathlines in the solid (left) and the fluid (right) and fluid density at
t = 50.0 µs.
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Figure 13: Density gradient magnitude (logarithmic scaling) at t = 65.7 µs.

Figure 14: Pathlines in the solid (left) and the fluid (right) and fluid density at
t = 65.7 µs.
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Figure 15: Velocity component vz in the solid (left) and the fluid (right) at t = 65.7
µs.

Figure 16: Logarithm of the absolute values of the stress component σzz in the solid
(left) and the pressure in the fluid (right) at t = 65.7 µs.
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Figure 17: Evaluation of simplified yield criterion for structural steel (left) and
stainless steel (right) at t = 50.0 µs.

Figure 18: Evaluation of simplified yield criterion for structural steel (left) and
stainless steel (right) at t = 52.0 µs.

Figure 19: Evaluation of simplified yield criterion for structural steel (left) and
stainless steel (right) at t = 54.0 µs.
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Figure 20: Evaluation of simplified yield criterion for structural steel (left) and
stainless steel (right) at t = 56.0 µs.

Figure 21: Evaluation of simplified yield criterion for aluminium (left) and copper
(right) at t = 50.0 µs.
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