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Abstract

We show in this paper that the gradient schemes (which encompass a

large family of discrete schemes) may be used for the approximation of

the Stefan problem ∂tū − ∆ζ(ū) = f . The convergence of the gradient

schemes to the continuous solution of the problem is proved thanks to

the following steps. First, estimates show (up to a subsequence) the weak

convergence to some function u of the discrete function approximating ū.

Then Alt-Luckhaus’ method, relying on the study of the translations with

respect to time of the discrete solutions, is used to prove that the discrete

function approximating ζ(ū) is strongly convergent (up to a subsequence)

to some continuous function χ. Thanks to Minty’s trick, we show that

χ = ζ(u). A convergence study then shows that u is then a weak solution

of the problem, and a uniqueness result, given here for fitting with the

precise hypothesis on the geometric domain, enables to conclude that

u = ū. This convergence result is illustrated by some numerical examples

using the Vertex Approximate Gradient scheme.

Key words : Stefan problem, gradient schemes, uniqueness result, con-

vergence study.
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1 Introduction

We are interested here in the approximation of ū, solution to the so-called Stefan
problem:

∂tū−∆ζ(ū) = f, in Ω× (0, T ) (1)

with the following initial condition:

ū(x, 0) = uini(x), for a.e. x ∈ Ω, (2)

together with the homogeneous Dirichlet boundary condition:

ζ(ū(x, t)) = 0 on ∂Ω× (0, T ), (3)

under the following assumptions:

Ω is an open bounded connected polyhedral subset of Rd, d ∈ N? and T > 0,
(4a)

uini ∈ L2(Ω) (4b)

f ∈ L2(Ω× (0, T )), (4c)

ζ ∈ C0(R) is non–decreasing, Lipschitz continuous with Lipschitz constant

Lζ , and such that ζ(0) = 0, (4d)

and

|ζ(s)| ≥ a|s| − b for all s ∈ R for some given values a, b ∈ (0,+∞). (4e)

The Stefan Problem (1)-(2)-(3) arises in particular in the study of the heat
equation in a nonmobile medium with two thermodynamical states, say solid and
liquid. Denoting, for (x, t) ∈ Ω× (0, T ), by Θ(x, t) the temperature and by X(x, t)
the normalized mass of liquid phase per unit volume (X(x, t) = 0 means that the
medium is solid at point (x, t) and X(x, t) = 1 means that it is liquid), the internal
energy u(x, t) can be modeled by ū(x, t) = HcΘ(x, t)+LfX(x, t), where Hc denotes
the heat capacity (assumed to be constant and identical for the liquid and the solid
phases) and Lf denotes the latent heat of fusion at the given fusion temperature
Θf . The heat equation can then be expressed by

∂tū− div(λ∇Θ(x, t)) = f(x, t), in Ω× (0, T ), (5)

where λ is the heat conductivity (assumed to be constant, isotropic and identical
for the liquid and the solid phases). Dirichlet boundary conditions are assumed to
be given on the temperature Θ, together with an initial condition given on ū. The
thermodynamical equilibrium is then assumed to be expressed by

(Θ(x, t) ≤ Θf and X(x, t) = 0)
or (Θ(x, t) = Θf and 0 ≤ X(x, t) ≤ 1)
or (Θ(x, t) ≥ Θf and X(x, t) = 1) a.e. (x, t) ∈ Ω× (0, T ).

(6)
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We may then remark that, under condition (6), X(x, t) and Θ(x, t) can be expressed
by X(x, t) = ξ(ū(x, t)) and Θ(x, t) = 1

λζ(ū(x, t)), with

ξ(s) = min(max(
s−HcΘf

Lf
, 0), 1) and ζ(s) = λ

s− Lfξ(s)
Hc

, ∀s ∈ R.

Plugging the preceding expression of Θ(x, t) as function of ū(x, t) in (5) leads to
(1), in which the function ζ is Lipschitz continuous (it is in fact continuous and
piecewise affine), nondecreasing, and constant on the interval [HcΘf , HcΘf + Lf ].
Many results are known in this situation, in particular the fact that, if f = 0 and
if the measure of the set {x ∈ Ω, ū(x, t) ∈ [HcΘf , HcΘf + Lf ]} (called the “mushy
region”) is equal to zero at t = 0, then it remains equal to zero for all t > 0, and
a discontinuity of ū between the values HcΘf and HcΘf + Lf may move inside the
domain (see [5]). Therefore, Problem (1)-(2)-(3) has to be considered in a weak
sense, which includes the Rankine-Hugoniot condition for the conservation of ū in
the case of discontinuities. A function ū is said to be a weak solution of Problem
(1)-(2)-(3) if the following holds:

ū ∈ L2(Ω× (0, T )), ζ(ū) ∈ L2(0, T ;H1
0 (Ω)),∫ T

0

∫
Ω

(−ū(x, t)∂tϕ(x, t) +∇ζ(ū)(x, t) · ∇ϕ(x, t)) dxdt−
∫

Ω
uini(x)ϕ(x, 0)dx

=

∫ T

0

∫
Ω
f(x, t)ϕ(x, t)dxdt, ∀ϕ ∈ C∞c (Ω× [0, T [), (7)

where we denote by C∞c (Ω×[0, T [) the set of the restrictions of functions of C∞c (Ω×]−
∞, T [) to Ω× [0, T [.

We also recall that, in mathematical finance, some derivative of the price of an
American option is the solution of some Stefan problem [3, 4], whose computation
is equivalent to the resolution of a variational inequality.

Let us first mention that the first proof of existence of a solution to Problem (7)
has been provided in [1]. This proof relies on the convergence, as ε > 0 tends to
zero, of the solution ūε of the following strictly parabolic regularization of (1):

∂tūε −∆(ζ(ūε) + εūε) = f(x, t), in Ω× (0, T ). (8)

It is easy to prove that ∂tūε remains bounded in L2(0, T ;H−1(Ω)), and that ζ(ūε)
remains bounded in L2(0, T ;H1

0 (Ω)) for all ε > 0. But no compactness can be de-
duced from these two bounds. One remarkable idea in [1] is to show that ‖ζ(ūε)−
ζ(ūε)(·, · + τ)‖L2(Ω×(0,T )) tends uniformly to 0 with τ . Then Kolmogorov’s theo-
rem allows to build a sequence (εm)m∈N converging to 0 such that the sequence
(ζ(ūεm))m∈N converges to some function χ in L2(Ω × (0, T )). A L∞(0, T ;L2(Ω))
bound on ūε allows to extract a subsequence from the sequence (εm)m∈N (identi-
cally denoted) such that there exists ū ∈ L∞(0, T ;L2(Ω)) such that (ūεm)m∈N weakly
converges to ū. Then Minty’s trick (which is available thanks to the monotonicity
of ζ) provides that χ = ζ(ū) (this is detailed in Lemma B.1).
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These ideas have been used in the study of the convergence of a finite volume
method [13]. In this paper, ∆−admissible meshes are used, in the sense that in
each control volume K, there exists a given point xK such that, for two neighboring
control volumes K and L sharing the interface σKL, the line (xK ,xL) is parallel
to the normal vector nK,L to σKL, oriented from xK to xL. Then the approxi-
mation of ū in the control volume K (resp. L) is denoted by uK (resp. uL), and
the approximation of ∇ζ(ū) · nK,L at this interface is given by the so-called two-

point flux approximation ζ(uL)−ζ(uK)
d(xK ,xL) . A major advantage can be drawn from this

approximation: multiplying the discrete scheme by uK and summing on the control
volumes leads to expressions such as (ζ(uL) − ζ(uK))(uL − uK). Thanks to the
Cauchy-Schwarz inequality, it is easy to prove that this expression is greater than
(η(uL) − η(uK))2, where η is a primitive of (ζ ′)1/2 (recall that a Lipschitz contin-
uous function is absolutely continuous, and therefore a.e. derivable, and it is the
primitive of its derivative, see e.g. [17, page 373]; moreover ζ ′ is bounded and there-
fore (ζ ′)1/2 ∈ L1

loc(R)). Then functional properties (including a discrete maximum
principle), similar to that of the continuous problem, can be shown, and the weak
convergence of u and ∇η(u) in L2, as well as the strong convergence of η(u) in L2

(implying that of ζ(u)) thanks to monotony arguments and Kolmogorov’s theorem,
are proved. Stronger convergence properties (i.e. convergence of u and ∇η(u) in
L2) could then easily be shown, following the ideas developed in the present paper
(see Lemma 3.2, Theorem 3.3 and Remark 1).

Unfortunately, if the diffusion term ∆ζ(ū) is approximated by a method other
than the two-point flux approximation, say by a general finite element method or
mixed finite element method, all the results obtained from the multiplication by u
no longer hold.

Concerning the uniqueness of the solution of (7), several results are given in
the literature under various hypotheses. A uniqueness theorem was proved in [13]
with more restrictive assumptions on Ω than (4), and a uniqueness theorem for
nonlinear convection-diffusion problems was proved in [6]. This uniqueness result
was extended to the notion of entropy process solution in [12]; it allows to prove the
convergence of a numerical scheme which extends the two-point flux approximation
[13]. Therefore we have to check the uniqueness of the solution under the precise
assumptions (4) made here. This is done in Theorem 4.1, the proof of which provides
the opportunity to study the convergence of some gradient schemes to regular linear
parabolic problems.

The purpose of this paper is to study the convergence of the so-called gradient
schemes for the approximation of the Stefan problem given by its weak form (7). This
framework includes, for example, the general case of the conforming finite elements
(see [2], [9], [19] for the use of this specific method). It also includes the case of mixed
finite element methods [11]. Gradient schemes have been studied in [14] for linear
elliptic problems, and in [8] in the case of nonlinear Leray-Lions-type elliptic and
parabolic problems. For such general methods, the monotony properties obtained
from the two-point flux approximation cannot be used, and the multiplication by
the solution u of the discrete scheme is of no use: in order to get estimates, one can
only multiply by ζ(u). We have therefore introduced the additional hypothesis (4e)
(which is not restrictive in practice, since it concerns the values of ζ(u) for large u,
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whereas u remains generally bounded) in order that a L2 estimate on ζ(u) implies
one on u.

This paper is organized as follows. We first apply the gradient discretization
tools (described in an appendix) to the Stefan Problem in Section 2, and derive
some estimates, which are used in Section 3 for the convergence analysis of gradient
schemes. Then, turning to the uniqueness of the solution of (7), we first establish
the existence of the continuous solution of a linear parabolic problem, showing the
regularity which is further needed in the course of the uniqueness proof (see Section
4). Finally, numerical examples show the behavior of a particular gradient scheme,
namely the VAG scheme [14] (see Section 5).

2 Approximation of the Stefan problem by space-time
gradient discretizations

Let D = (XD,0,ΠD,∇D, (t(n))n=0,...,N ) be a space-time discretization in the sense of
Definition A.9 such that ΠD is a piecewise constant function reconstruction in the
sense of Definition A.8. We define the following (implicit) scheme for the discretiza-
tion of Problem (7). We consider a sequence (u(n))n=0,...,N such that:

u(0) ∈ XD,0,

u(n+1) ∈ XD,0, δ
(n+ 1

2
)

D u = ΠD
u(n+1) − u(n)

δt(n+ 1
2

)
,∫

Ω

(
δ

(n+ 1
2

)

D u(x)ΠDv(x) +∇Dζ(u(n+1))(x) · ∇Dv(x)

)
dx =

1

δt(n+ 1
2

)

∫ t(n+1)

t(n)

∫
Ω
f(x, t)ΠDv(x)dxdt, ∀v ∈ XD,0, ∀n = 0, . . . , N − 1.

(9)

We again use the notations ΠD and ∇D for the definition of space-time dependent
functions (note that we define these functions for all t ∈ [0, T ]):

ΠDu(x, 0) = ΠDu
(0)(x)for a.e. x ∈ Ω,

ΠDu(x, t) = ΠDu
(n+1)(x)

ΠDζ(u)(x, t) = ΠDζ(u(n+1))(x)

∇Dζ(u)(x, t) = ∇Dζ(u(n+1))(x),

for a.e. x ∈ Ω, ∀t ∈ (t(n), t(n+1)], ∀n = 0, . . . , N − 1.

(10)

We also denote

δDu(x, t) = δ
(n+ 1

2
)

D u(x), for a.e. (x, t) ∈ Ω× (t(n), t(n+1)), ∀n = 0, . . . , N − 1. (11)

We finally introduce the primitive function

Z(s) =

∫ s

0
ζ(x)dx, ∀s ∈ R. (12)

which is used several times in the convergence proofs. We then have

Z(s) =

∫ s

0
ζ(x)dx =

∫ s

0
(ζ(x)− ζ(0))dx ≤ Lζ

∫ s

0
xdx = Lζ

s2

2
, ∀s ∈ R, (13)
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and, from Hypotheses (4d) and (4e),

Z(s) ≥
∫ s

0
ζ(x)

ζ ′(x)

Lζ
dx =

ζ(s)2

2Lζ
≥ a2s2 − 2b2

4Lζ
, ∀s ∈ R. (14)

(where we have used the fact that ζ2 is locally Lipschitz continuous, and therefore
locally absolutely continuous).

Lemma 2.1 (L∞(0, T ;L2(Ω)) estimate, discrete L2(0, T ;H1
0 (Ω)) estimate and

existence of a discrete solution)
Under Hypotheses (4), let D = (XD,0,ΠD,∇D, (t(n))n=0,...,N ) be a space-time

gradient discretization in the sense of Definition A.9 such that ΠD is a piecewise
constant function reconstruction in the sense of Definition A.8. Then there exists
at least one solution to Scheme (9), which satisfies∫ T

0

∫
Ω
|∇Dζ(u)(x, t)|2dxdt

+

∫
Ω

(Z(ΠDu
(N)(x))− Z(ΠDu

0(x)))dx ≤
∫ T

0

∫
Ω
f(x, t)ΠDζ(u)(x, t)dxdt.

(15)

Moreover, let CP > 0 such that CD ≤ CP , where CD is the coercivity constant of
the discretization (see Definition A.2 in the appendix) and let Cini > 0 be such that
Cini ≥ ‖uini − ΠDu

(0)‖L2(Ω); then there exists C1 > 0, only depending on Lζ , a, b,
CP , Cini and f such that, for any solution u to this scheme,

‖ΠDζ(u)‖L∞(0,T ;L2(Ω)) ≤ C1, and ‖ΠDu‖L∞(0,T ;L2(Ω)) ≤ C1, (16)

and
‖∇Dζ(u)‖L2(Ω×(0,T ))d ≤ C1. (17)

Proof
Before showing the existence of at least one discrete solution to Scheme (9), let

us first prove if there exists a solution then it satisfies (15), (16) and (17). From

the properties of function Z defined by (12), and using
∫ b
a ζ(x)dx = Z(b)− Z(a) =

ζ(b)(b− a)−
∫ b
a ζ
′(x)(x− a)dx, we get, from Hypothesis (4d), that

δt(n+ 1
2

)δ
(n+ 1

2
)

D u ΠDζ(u(n+1)) ≥ ΠDZ(u(n+1))−ΠDZ(u(n)). (18)

We then let v = δt(n+ 1
2

)ζ(u(n+1)) in (9), we sum the obtained equation for n =
0, . . . ,m − 1 for a given m = 1, . . . , N , and using (18), we get (15) replacing T by
t(m) and u(N) by u(m). Thanks to the Cauchy-Schwarz inequality, we get that

‖ΠDZ(u(m))‖L1(Ω) +

∫ t(m)

0
‖∇Dζ(u)(·, t)‖2L2(Ω)ddt

≤ ‖f‖L2(Ω×(0,t(m)))‖ΠDζ(u)‖L2(Ω×(0,t(m))) + ‖ΠDZ(u(0))‖L1(Ω),
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which in turn yields, thanks to the Young inequality, and to (13) and (14),

1

2Lζ
‖ΠDζ(u(m))‖2L2(Ω) +

∫ t(m)

0
‖∇Dζ(u)(·, t)‖2L2(Ω)ddt

≤
C2
D
2
‖f‖2

L2(Ω×(0,t(m)))
+

1

2C2
D
‖ΠDζ(u)‖2

L2(Ω×(0,t(m)))
+
Lζ
2
‖ΠDu(0)‖2L2(Ω).

Using the definition (55) of CD, we prove the first estimate of (16) and the estimate
(17). We get the second estimate of (16) by using the second part of (14).

The existence of a solution follows from these estimates by a now classical topo-
logical degree argument. Indeed, let θ ∈ [0, 1], we introduce ζθ(s) = θζ(s)+(1−θ)as,
for any s ∈ R. Replacing ζ by ζθ in the scheme, we get the same a priori estimates
(16) and (17) independently of θ (remark that one can replace ζ by ζθ in (4d) and
(4e), keeping the same values Lζ , a and b since a ≤ Lζ). We conclude thanks to the
Brouwer topological degree, since setting θ = 0, we obtain the discretization of the
heat equation, for which the existence of the solution is well–known. �

Lemma 2.2 (Uniqueness results on the discrete solution)
Under Hypotheses (4), let D = (XD,0,ΠD,∇D, (t(n))n=0,...,N ) be a space-time

gradient discretization in the sense of Definition A.9 such that ΠD is a piecewise
constant function reconstruction in the sense of Definition A.8. Let u(0) ∈ XD,0 be
given, and, for n = 0, . . . , N − 1, let u(n+1) ∈ XD,0 be such that (9) holds. Then, for
all n = 0, . . . , N − 1, ΠDu

(n+1) ∈ L2(Ω) and ζ(u(n+1)) ∈ XD,0 are unique.

Proof
Let us consider two solutions, denoted u(n+1), ũ(n+1) ∈ XD,0, for some n =

0, . . . , N − 1, such that (9) holds with ΠDu
(n)(x) = ΠDũ

(n)(x), for a.e. x ∈ Ω. We
then subtract the corresponding equation with ũ(n+1) to that with u(n+1). We get∫

Ω

(ΠD(u(n+1) − ũ(n+1))(x)

δt(n+ 1
2

)
ΠDv(x)+

∇D(ζ(u(n+1))− ζ(ũ(n+1)))(x) · ∇Dv(x)
)

dx = 0,∀v ∈ XD,0. (19)

We let v = ζ(u(n+1))− ζ(ũ(n+1)) in (19). Using Hypothesis (4d), we may write that

(ΠD(u(n+1) − ũ(n+1))(x))ΠD(ζ(u(n+1))− ζ(ũ(n+1)))(x)

= (ΠDu
(n+1)(x)−ΠDũ

(n+1)(x))(ζ(ΠDu
(n+1)(x))− ζ(ΠDũ

(n+1)(x))) ≥ 0,

which implies that ∫
Ω
|∇D(ζ(u(n+1))− ζ(ũ(n+1)))(x)|2dx = 0,

and therefore that ζ(u(n+1)) = ζ(ũ(n+1)). We then get, from (19), that∫
Ω

ΠD(u(n+1) − ũ(n+1))(x)

δt(n+ 1
2

)
ΠDv(x)dx = 0, ∀v ∈ XD,0.
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It now suffices to let v = u(n+1) − ũ(n+1) in the preceding equation, to get that
ΠDu

(n+1)(x) = ΠDũ
(n+1)(x) for a.e. x ∈ Ω.

�
In order to fulfill the hypotheses of discrete Alt–Luckhaus theorem B.3, let us

study the time translates.

Lemma 2.3 (Estimate on the time translates)
Under Hypotheses (4), let D = (XD,0,ΠD,∇D, (t(n))n=0,...,N ) be a space-time

gradient discretization in the sense of Definition A.9 such that ΠD is a piecewise
constant function reconstruction in the sense of Definition A.8. Then there exists
C2 > 0, only depending on Lζ , a, b, CP > CD, Cini > ‖uini − ΠDu

(0)‖L2(Ω), f such
that, for any solution u to Scheme (9),

‖ΠDζ(u)(·, ·+ τ)−ΠDζ(u)(·, ·)‖2L2(Ω×(0,T−τ)) ≤ C2(τ + δt), ∀τ ∈ (0, T ). (20)

Proof
In order to make the proof clear, let us give its principle, assuming that a solution

ū of the continuous equation (1) is regular enough. We write the time translate of
this solution in L2(Ω× (0, T − τ)), for a step τ ∈ (0, T ). We first note that

(ζ(ū(x, t+ τ))− ζ(ū(x, t)))2 ≤ Lζ(ζ(ū(x, t+ τ))− ζ(ū(x, t)))(ū(x, t+ τ)− ū(x, t)),

which gives, using (1),

(ζ(ū(x, t+ τ))− ζ(ū(x, t)))2

≤ Lζ(ζ(ū(x, t+ τ))− ζ(ū(x, t)))

∫ τ

0
∂tū(x, t+ s)ds

≤ Lζ(ζ(ū(x, t+ τ))− ζ(ū(x, t)))

∫ τ

0
(∆ζ(ū(x, t+ s)) + f(x, t+ s))ds.

Therefore we have∫ T−τ

0

∫
Ω

(ζ(ū(x, t+ τ))− ζ(ū(x, t)))2dxdt

≤ Lζ
∫ τ

0

∫ T−τ

0

∫
Ω

(ζ(ū(x, t+ τ))− ζ(ū(x, t)))

(∆ζ(ū(x, t+ s)) + f(x, t+ s))dxdtds

≤ Lζ
∫ τ

0

∫ T−τ

0

∫
Ω

(−∇ζ(ū(x, t+ τ)) +∇ζ(ū(x, t))) · ∇ζ(ū(x, t+ s))dxdtds

+Lζ

∫ τ

0

∫ T−τ

0

∫
Ω

(ζ(ū(x, t+ τ))− ζ(ū(x, t)))f(x, t+ s)dxdtds.

Each product ab of the above right hand side is then bounded by 1
2(a2 + b2), which

allows to conclude, thanks to the continuous estimates similar to (16), that∫ T−τ

0

∫
Ω

(ζ(ū(x, t+ τ))− ζ(ū(x, t)))2dxdt ≤ τC.

International Journal on Finite Volumes 8
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Let us now use the same ideas for the proof of (20). Let τ ∈ (0, T ). Similarly
using that Lζ is a Lipschitz constant of ζ and ζ is nondecreasing, and using (59),
the following inequality holds:

∫
Ω×(0,T−τ)

(
ΠDζ(u)(x, t+ τ)−ΠDζ(u)(x, t)

)2
dxdt ≤ Lζ

∫ T−τ

0
A(t)dt, (21)

where, for almost every t ∈ (0, T − τ),

A(t) =

∫
Ω

(
ΠDζ(u)(x, t+ τ)−ΠDζ(u)(x, t)

)(
ΠDu(x, t+ τ)−ΠDu(x, t)

)
dx.

Let t ∈ (0, T − τ). Denoting n0(t), n1(t) = 0, . . . , N − 1 such that t(n0(t)) ≤ t <
t(n0(t)+1) and t(n1(t)) ≤ t+ τ < t(n1(t)+1), we may write

A(t) =

∫
Ω

(
ΠDζ(u(n1(t)+1))(x)−ΠDζ(u(n0(t)+1))(x)

)
×
( n1(t)∑
n=n0(t)+1

δt(n+ 1
2

)δ
(n+ 1

2
)

D u(x)
)

dx,

which also reads

A(t) =

∫
Ω

(
ΠDζ(u(n1(t)+1))(x)−ΠDζ(u(n0(t)+1))(x)

)
×
(N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2

)δ
(n+ 1

2
)

D u(x)
)

dx,
(22)

with χn(t, t + τ) = 1 if t(n) ∈ (t, t + τ ] and χn(t, t + τ) = 0 if t(n) /∈ (t, t + τ ].
Letting v = ζ(u(n1(t)+1))− ζ(u(n0(t)+1)) in Scheme (9), we get from (22)

A(t) =
N−1∑
n=1

χn(t, t+ τ)

×
∫

Ω

∫ t(n+1)

t(n)
f(x, t)dt

(
ΠDζ(u(n1(t)+1))(x)−ΠDζ(u(n0(t)+1))(x)

)
dx

−
N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2

)

×
∫

Ω
∇Dζ(u(n+1))(x) ·

(
∇Dζ(u(n1(t)+1))(x)−∇Dζ(u(n0(t)+1))(x)

)
dx.

Using the inequality ab ≤ 1
2(a2 + b2), this yields:

A(t) ≤ 1

2
A0(t) +

1

2
A1(t) +A2(t) +A3(t), (23)

with
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A0(t) =
N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2

)

∫
Ω
|∇Dζ(u(n0(t)+1))(x)|2dx,

A1(t) =
N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2

)

∫
Ω
|∇Dζ(u(n1(t)+1))(x)|2dx,

A2(t) =
N−1∑
n=1

χn(t, t+ τ)δt(n+ 1
2

)

∫
Ω
|∇Dζ(u(n+1))(x)|2dx,

and

A3(t) =
N−1∑
n=1

χn(t, t+ τ)

∫
Ω

∫ t(n+1)

t(n)
f(x, t)dt

(
ΠDζ(u(n1(t)+1))(x)−ΠDζ(u(n0(t)+1))(x)

)
dx.

Applying [16, Proposition 9.3] yields∫ T−τ

0
A0(t)dt ≤ (τ + δt)‖∇Dζ(u)‖2L2(Ω×(0,T ))

and

∫ T−τ

0
A1(t)dt ≤ (τ + δt)‖∇Dζ(u)‖2L2(Ω×(0,T )),

(24)

as well as ∫ T−τ

0
A2(t)dt ≤ τ‖∇Dζ(u)‖2L2(Ω×(0,T )), (25)

and, with again the application of [16, Proposition 9.3], and using the Young in-
equality as well as (16), we obtain∫ T−τ

0
A3(t)dt ≤ (τ + δt)TC2

1 + τ‖f‖2L2(Ω×(0,T )). (26)

Using inequalities (21), (23), (24), (25) and (26), we conclude the proof of (20).
�

3 Convergence results

Theorem 3.1
Let Hypotheses (4) be fulfilled. Let (Dm)m∈N be a consistent sequence of space-

time gradient discretizations in the sense of Definition A.10, such that the associated
sequence of approximate gradient approximations is limit–conforming (Definition
A.4) and compact (Definition A.5, it is then coercive in the sense of Definition A.2),
and such that, for all m ∈ N, ΠDm is a piecewise constant function reconstruction
in the sense of Definition A.8. For any m ∈ N, let um be a solution to Scheme (9),

such that ‖uini −ΠDmu
(0)
m ‖L2(Ω) → 0 as m→∞.

Then there exists u ∈ L2(Ω× (0, T )) such that
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1. ΠDmum weakly converges in L2(Ω× (0, T )) to u as m→∞,

2. ΠDmζ(um) converges in L2(Ω× (0, T )) to ζ(u) as m→∞,

3. ζ(u) ∈ L2(0, T ;H1
0 (Ω)) and ∇Dmζ(um) weakly converges in L2(Ω× (0, T ))d to

∇ζ(u) as m→∞,

and u is the unique weak solution of Problem (7).

Proof
We consider, for all m ∈ N, the spaces Bm = ΠDmXDm,0 ⊂ L2(Ω), embedded

with the norm

‖w‖Bm = inf{‖u‖Dm , ΠDmu = w}, ∀w ∈ Bm, ∀m ∈ N.

The compactness hypothesis of (Dm)m∈N allows to enter into the framework of dis-
crete Alt-Luckhaus’ theorem B.3.

Thanks to Lemma 2.1, we get that Hypothesis (h1) of Theorem B.3 is satisfied.
We classically identify L2(0, T ;L2(Ω)) and L2(Ω × (0, T )), and we define, for τ ∈
(0, T ), gm(τ) = ‖ΠDζ(u)(·, ·+ τ)− ΠDζ(u)(·, ·)‖L2(Ω×(0,T−τ)) and g(τ, t) = (C2(τ +

δt))1/2. Thanks to Lemma 2.3 and to the continuity in means theorem (which implies
that gm is continuous in 0), we may apply Lemma B.2 and deduce that hypothesis
(h2) of Theorem B.3 also holds. Therefore, there exists χ ∈ L2(Ω× (0, T )) such that
ΠDmζ(um) converges, up to the extraction of a subsequence, to χ in L2(Ω× (0, T )).
Again applying Lemma 2.1, we get that there exists u ∈ L2(Ω × (0, T )) such that
ΠDmum weakly converges, up again to the extraction of a subsequence, to u in
L2(Ω× (0, T )). Thanks to Lemma B.1, we conclude that χ(x, t) = ζ(u(x, t)) for a.e.
(x, t) ∈ Ω× (0, T ). It now remains to prove that u is the weak solution of Problem
(7).

Let m ∈ N, and let us denote D = Dm (belonging to the above subsequence)
and drop some indices m for the simplicity of the notation.

Let ϕ ∈ C∞c ([0, T )) and w ∈ C∞c (Ω) , and let v ∈ XD,0 be such that

v = argmin
z∈XD,0

SD(w).

We take as test function v in (9) the function δt(n+ 1
2

)ϕ(t(n))v, and we sum the
resulting equation on n = 0, . . . , N − 1. we get

T
(m)
1 + T

(m)
2 = T

(m)
3 , (27)

with

T
(m)
1 =

N−1∑
n=0

δt(n+ 1
2

)ϕ(t(n))

∫
Ω
δ

(n+ 1
2

)

D u(x)ΠDv(x)dx,

T
(m)
2 =

N−1∑
n=0

δt(n+ 1
2

)ϕ(t(n))

∫
Ω
∇Dζ(u(n+1))(x) · ∇Dv(x)dx,
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and

T
(m)
3 =

N−1∑
n=0

ϕ(t(n))

∫ t(n+1)

t(n)

∫
Ω
f(x, t)ΠDv(x)dxdt.

Writing

T
(m)
1 = −

∫ T

0
ϕ′(t)

∫
Ω

ΠDu(x, t)ΠDv(x)dxdt− ϕ(0)

∫
Ω

ΠDu
(0)(x)ΠDv(x)dx,

we get that

lim
m→∞

T
(m)
1 = −

∫ T

0
ϕ′(t)

∫
Ω
u(x, t)w(x)dxdt− ϕ(0)

∫
Ω
uini(x)w(x)dx.

We also immediately get that

lim
m→∞

T
(m)
2 =

∫ T

0
ϕ(t)

∫
Ω
∇ζ(u)(x, t) · ∇w(x)dxdt,

and

lim
m→∞

T
(m)
3 =

∫ T

0
ϕ(t)

∫
Ω
f(x, t)w(x)dxdt.

Since the set T = {
∑q

i=1 ϕi(t)wi(x) : q ∈ N, ϕi ∈ C∞c [0, T ), wi ∈ C∞c (Ω)} is dense
in C∞c (Ω× [0, T )), we conclude the proof of Theorem 3.1 thanks to the uniqueness
of the limit solution proved in Theorem 4.1 below.

�
The next lemma states a continuous property, which is used below for proving

that the convergence of ∇Dmζ(um) to ∇ζ(u) is in fact strong.

Lemma 3.2
Under Hypotheses (4), let u be a solution of (7). Then the following property

holds: ∫ T

0

∫
Ω
|∇ζ(u)(x, t)|2dxdt+

∫
Ω

(Z(u(x, T ))− Z(uini(x)))dx

=

∫ T

0

∫
Ω
f(x, t)ζ(u(x, t))dxdt.

(28)

Proof
We first notice that (7) implies that ∂tu ∈ L2(0, T ;H−1(Ω)) (and therefore u ∈

C([0, T ], H−1(Ω)) with u(0) = uini) and that we can write∫ T

0

(
〈∂tu(t), w(t)〉+

∫
Ω
∇ζ(u) · ∇wdx

)
dt

=

∫ T

0

∫
Ω
fwdxdt, ∀w ∈ L2(0, T ;H1

0 (Ω)),

(29)

denoting by 〈·, ·〉 the duality product (H−1(Ω), H1
0 (Ω)). We prolong u by u(t) = uini

for all t ≤ 0, and by u(t) = u(T ) for all t ≥ T .
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Let h ∈ (0, T ). We consider αh ∈ L2(R;H−1(Ω)) defined by

〈αh(t), w〉 =
1

h

∫ t

t−h
〈∂tu(s), w〉ds

=

∫
Ω

1

h
(u(x, t)− u(x, t− h))w(x)dx, for t ∈ R, ∀w ∈ H1

0 (Ω).

Then αh tends to ∂tu in L2(R;H−1(Ω)) as h→ 0, which implies that

lim
h→0

∫
R

∫
Ω

1

h
(u(x, t)− u(x, t− h))w(x, t)dxdt

+

∫ T

0

∫
Ω
∇ζ(u) · ∇wdxdt =

∫ T

0

∫
Ω
fwdxdt, ∀w ∈ L2(R;H1

0 (Ω)).

Let us take w = ζ(u) in the above equation. We get

lim
h→0

∫
R

∫
Ω

1

h
(u(x, t)− u(x, t− h))ζ(u(x, t))dxdt

+

∫ T

0

∫
Ω
|∇ζ(u)|2dxdt =

∫ T

0

∫
Ω
f ζ(u)dxdt.

Again observing that
∫ b
a ζ(x)dx = Z(b) − Z(a) = ζ(b)(b − a) −

∫ b
a ζ
′(x)(x − a)dx,

which implies Z(b)− Z(a) ≤ ζ(b)(b− a), we get that∫
R

∫
Ω

1

h
(u(x, t)− u(x, t− h))ζ(u(x, t))dxdt

≥
∫
R

∫
Ω

1

h
(Z(u(x, t))− Z(u(x, t− h)))dxdt.

Since ∫
R

∫
Ω

1

h
(Z(u(x, t))− Z(u(x, t− h)))dxdt

=
1

h

∫ T+h

T

∫
Ω
Z(u(x, T ))dxdt− 1

h

∫ h

0

∫
Ω
Z(uini(x))dxdt

=

∫
Ω

(Z(u(x, T ))− Z(uini(x)))dx.

We may then pass to the limit h→ 0. We then obtain∫
Ω

(Z(u(x, T ))− Z(uini(x)))dx+

∫ T

0

∫
Ω
|∇ζ(u)|2dxdt ≤

∫ T

0

∫
Ω
f ζ(u)dxdt.

(30)
We then follow the same reasoning, defining w = ζ(u) and βh ∈ L2(R;H−1(Ω)) by

〈βh(t), w〉 =
1

h

∫ t+h

t
〈∂tu(s), w〉ds, for t ∈ R, ∀w ∈ H1

0 (Ω).

Remarking that
∫ b
a ζ(x)dx = Z(b) − Z(a) = ζ(a)(b − a) +

∫ b
a ζ
′(x)(b − x)dx, which

implies Z(b)− Z(a) ≥ ζ(a)(b− a), we get that∫
R

∫
Ω

1

h
(u(x, t+ h)− u(x, t))ζ(u(x, t))dxdt

≤
∫
R

∫
Ω

1

h
(Z(u(x, t+ h))− Z(u(x, t)))dxdt.
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Since ∫
R

∫
Ω

1

h
(Z(u(x, t+ h))− Z(u(x, t)))dxdt

=
1

h

∫ T

T−h

∫
Ω
Z(u(x, T ))dxdt− 1

h

∫ 0

−h

∫
Ω
Z(uini(x))dxdt

=

∫
Ω

(Z(u(x, T ))− Z(uini(x)))dx,

we may then pass to the limit h→ 0. We thus get∫
Ω

(Z(u(x, T ))− Z(uini(x)))dx+

∫ T

0

∫
Ω
|∇ζ(u)|2dxdt ≥

∫ T

0

∫
Ω
f ζ(u)dxdt,

which, in addition to (30), concludes the proof of (28).
�

We may now state the strong convergence of ∇Dζ(u).

Theorem 3.3 (Strong convergence of the numerical scheme)
Under the same hypotheses as those of Theorem 3.1, Then there exists u ∈

L2(Ω× (0, T )) ∩ C([0, T ], H−1(Ω)) such that

1. ΠDmum(t) weakly converges in L2(Ω) to u(t), for all t ∈ [0, T ], as m→∞,

2. ΠDmζ(um)(t) converges in L2(Ω) to ζ(u)(t), for all t ∈ [0, T ], as m→∞,

3. ζ(u) ∈ L2(0, T ;H1
0 (Ω)) and ∇Dmζ(um) converges in L2(Ω× (0, T ))d to ∇ζ(u)

as m→∞,

and u is the unique weak solution of Problem (7).

Proof
We first apply Theorem 3.1, which shows the weak convergence of ΠDmum and

∇Dmζ(um), and the strong convergence of ΠDmζ(um). Let ϕ ∈ C∞c (Ω), and let wm
such that

wm = argmin
z∈XD,0

SD(ϕ).

We get from Scheme (9) and from the estimates given in Lemma 2.1 the following
property: there exists C3, only depending on the data introduced in 4, such that,
for all 0 ≤ s ≤ t,∣∣∣∣∫

Ω
(ΠDmum(x, t)−ΠDmum(x, s))ΠDmwm(x)dx

∣∣∣∣ ≤ (t− s+ 2δtm)1/2C3‖wm‖Dm ,

which gives, thanks to (16),∣∣∣∣∫
Ω

(ΠDmum(x, t)−ΠDmum(x, s))ϕ(x)dx

∣∣∣∣
≤ (t− s+ 2δtm)1/2C3‖wm‖Dm + 2C1‖ϕ−ΠDmwm‖L2(Ω).
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Using
√
t− s+ 2δtm ≤

√
t− s+

√
2δtm, we get∣∣∣∣∫

Ω
(ΠDmum(x, t)−ΠDmum(x, s))ϕ(x)dx

∣∣∣∣ ≤ g(t− s, hϕm),

with g(a, b) =
√
aC4 + b, with C4 = C3 maxm ‖wm‖Dm and hϕm = (2δtm)1/2C4 +

2C1‖ϕ−ΠDmwm‖L2(Ω). We then may apply Theorem B.4 (given in the Appendix),
proving that, for all t ∈ [0, T ], ΠDmum(t) tends to u(t) for the weak topology of
L2(Ω).

Thanks to the convexity of Z, we then get∫
Ω
Z(u(x, T ))dx ≤ lim inf

m→∞

∫
Ω
Z(ΠDmum(x, T ))dx,

and we classically have, from the weak convergence property of ∇Dmζ(um),∫ T

0

∫
Ω
|∇ζ(u)(x, t)|2dxdt ≤ lim inf

m→∞

∫ T

0

∫
Ω
|∇Dmζ(um)(x, t)|2dxdt.

Therefore, we may pass to the limit sup as m→∞ in (15), and subtract (28). We
thus obtain

lim sup
m→∞

∫ T

0

∫
Ω
|∇Dmζ(um)(x, t)|2dxdt+

∫
Ω
Z(ΠDmum(x, T ))dx

≤
∫ T

0

∫
Ω
|∇ζ(u)(x, t)|2dxdt+

∫
Ω
Z(u(x, T ))dx.

This shows that

lim
m→∞

∫ T

0

∫
Ω
|∇Dmζ(um)(x, t)|2dxdt =

∫ T

0

∫
Ω
|∇ζ(u)(x, t)|2dxdt,

which concludes the proof of the convergence of ∇Dmζ(um) to ∇ζ(u) in L2(Ω ×
(0, T ))d, and

lim
m→∞

∫
Ω
Z(ΠDmum(x, T ))dx =

∫
Ω
Z(u(x, T ))dx. (31)

Note that the preceding limit result holds in fact for all t0 ∈ [0, T ] instead of T . We
then remark that, thanks to the monotony of ζ, there holds [10, Lemma 2.3]

1

2Lζ
(ζ(a)− ζ(b))2 ≤

∫ b

a
(ζ(s)− ζ(a))ds = Z(b)− Z(a)− ζ(a)(b− a), ∀a, b ∈ R.

We then deduce

1

2Lζ

∫
Ω

(ζ(ΠDmum(x, t0))− ζ(u(x, t0)))2dx

≤
∫

Ω
(Z(ΠDmum(x, t0))− Z(u(x, t0)))dx

−
∫

Ω ζ(u(x, t0))(ΠDmum(x, t0)− u(x, t0))dx.

Since the right hand side tends to zero using (31) and the weak convergence of
ΠDmum(·, t0) to u(·, t0), we conclude the convergence in L2(Ω) of ζ(ΠDmum(·, t0))
to ζ(u(·, t0)), hence concluding the proof.

�
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Remark 1 In the case where a two-point flux approximation is used instead of a
gradient scheme, one can get with the same arguments that the approximation of u
is strongly convergence at all times to the weak solution.

4 Proof of uniqueness by a regularized adjoint problem

Let us state and prove the uniqueness theorem, admitting some existence theorem
proven below. The method is similar to that of [13], where the existence result for
the adjoint problem is given under some regularity hypotheses on Ω which are not
done in this paper.

Theorem 4.1 Under Hypotheses (4), there exists at most one solution to (7).

Proof
Let u1 and u2 be two solutions of Problem (7). We set ud = u1 − u2. Let us

also define, for all (x, t) ∈ Ω × R?+, q(x, t) =
ζ(u1(x, t))− ζ(u2(x, t))

u1(x, t)− u2(x, t)
if u1(x, t) 6=

u2(x, t), else q(x, t) = 0. For all T ∈ R?+ and for all ψ ∈ L2(0, T ;H1
0 (Ω)) with

∂tψ ∈ L2(Ω× (0, T )) and ∆ψ ∈ L2(Ω× (0, T )), we deduce from (7), approximating
ψ by regular functions ϕ ∈ C∞c (Ω× [0, T )), that∫ T

0

∫
Ω
ud(x, t)

(
∂tψ(x, t) + q(x, t)∆ψ(x, t)

)
dxdt = 0. (32)

Let w ∈ C∞c (Ω× (0, T )). Let us denote, for ε > 0, qε = q + ε. We have

ε ≤ qε(x, t) ≤ Lζ + ε, for all (x, t) ∈ Ω× (0, T ),

and
(qε(x, t)− q(x, t))2

qε(x, t)
≤ ε. (33)

Let ψε be given by lemma 4.2 below, with g = qε. Substituting ψ by ψε in (32) and
using (37) give

|
∫ T

0

∫
Ω
ud(x, t)w(x, t)dxdt| ≤ |

∫ T

0

∫
Ω
ud(x, t)(qε(x, t)− q(x, t))∆ψε(x, t)dxdt|.

(34)
The Cauchy-Schwarz inequality, (38) and (33) imply

[∫ T

0

∫
Ω
ud(x, t)(qε(x, t)− q(x, t))∆ψε(x, t)|dxdt

]2

≤
∫ T

0

∫
Ω
ud(x, t)

2 (q(x, t)− qε(x, t))2

qε(x, t)
dxdt

∫ T

0

∫
Ω
qε(x, t)

(
∆ψε(x, t)

)2
dxdt

≤ ε
∫ T

0

∫
Ω
ud(x, t)

2dxdt 4T

∫ T

0

∫
Ω
|∇w(x, t)|2dxdt.

(35)
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We deduce that the right hand side of (35) tends to zero as ε → 0. Hence the left
hand side of (34) also tends to zero as ε→ 0, which gives

|
∫ T

0

∫
Ω
ud(x, t)w(x, t)dxdt| = 0. (36)

Since (36) holds for any function w ∈ C∞c (Ω × (0, T )), we get that ud(x, t) = 0
for a.e. (x, t) ∈ Ω× (0, T ), which concludes the proof of Theorem 4.1.

�
Let us now prove the properties of the function ψ, used in the course of the proof

of Theorem 4.1.

Lemma 4.2
Under Hypothesis (4a), let w ∈ L2(0, T ;H1

0 (Ω)) and g ∈ L∞(Ω × (0, T )) with
g(x, t) ∈ [gmin, gmax] with given gmax ≥ gmin > 0 for a.e. (x, t) ∈ Ω × (0, T ). Then
there exists at least one function ψ such that,

1. ψ ∈ L∞(0, T ;H1
0 (Ω)), ∂tψ ∈ L2(Ω × (0, T )), ∆ψ ∈ L2(Ω × (0, T )) (hence

ψ ∈ C0(0, T ;L2(Ω))),

2. ψ(·, T ) = 0,

3. the following holds

∂tψ(x, t) + g(x, t)∆ψ(x, t) = w(x, t), for a.e. (x, t) ∈ Ω× (0, T ), (37)

4. and ∫ T

0

∫
Ω
g(x, t)

(
∆ψ(x, t)

)2
dxdt ≤ 4T

∫ T

0

∫
Ω
|∇w(x, t)|2dxdt. (38)

Proof
We first apply Lemma 4.4, which states the convergence of a gradient scheme to

ψ ∈ L∞(0, T ;H1
0 (Ω)) with ∂tψ ∈ L2(Ω× (0, T )) and ∆ψ ∈ L2(Ω× (0, T )) such that

(37) holds, setting ν = 1/g, f = w/g, µ(s) = s, ψini = 0 and changing t in −t (this
ensures that Hypotheses (46) are fulfilled). Therefore the existence of ψ satisfying
(37) follows. Let us prove that it satisfies (38). Approximating ψ by a sequence of
regular functions and passing to the limit, we get that ‖∇ψ(·)‖L2(Ω)d ∈ C0([0, T ])
and that∫ τ

s

∫
Ω
∂tψ(x, t)∆ψ(x, t)dxdt = −1

2

∫
Ω
|∇ψ(x, τ)|2dx+

1

2

∫
Ω
|∇ψ(x, s)|2dx,

for all s < τ ∈ [0, T ] and∫ τ

s

∫
Ω
w(x, t)∆ψ(x, t)dxdt = −

∫ τ

s

∫
Ω
∇w(x, t) · ∇ψ(x, t)dxdt.
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We thus obtain, multiplying (37) by ∆ψ(x, t) and integrating on Ω× (0, τ) for any
τ ∈ [0, T ],

1

2

∫
Ω
|∇ψ(x, 0)|2dx − 1

2

∫
Ω
|∇ψ(x, τ)|2dx +

∫ τ

0

∫
Ω
g(x, t)

(
∆ψ(x, t)

)2
dxdt =

−
∫ τ

0

∫
Ω
∇w(x, t) · ∇ψ(x, t)dxdt.

(39)
Since ∇ψ(·, T ) = 0, letting τ = T in (39) leads to

1

2

∫
Ω
|∇ψ(x, 0)|2dx+

∫ T

0

∫
Ω
g(x, t)

(
∆ψ(x, t)

)2
dxdt =

−
∫ T

0

∫
Ω
∇w(x, t) · ∇ψ(x, t)dxdt.

(40)

Integrating (39) with respect to τ ∈ (0, T ) leads to

1

2

∫ T

0

∫
Ω
|∇ψ(x, τ)|2dxdτ ≤ T

2

∫
Ω
|∇ψ(x, 0)|2dx +

T

∫ T

0

∫
Ω
g(x, t)

(
∆ψ(x, t)

)2
dxdt +

T

∫ T

0

∫
Ω
|∇w(x, t) · ∇ψ(x, t)|dxdt.

(41)

Using (40) and (41), we get

1

2

∫ T

0

∫
Ω
|∇ψ(x, τ)|2dxdτ ≤ 2T

∫ T

0

∫
Ω
|∇w(x, t) · ∇ψ(x, t)|dxdt. (42)

Thanks to the Cauchy-Schwarz inequality, the right hand side of (42) may be
estimated as follows:[∫ T

0

∫
Ω
|∇w(x, t) · ∇ψ(x, t)|dxdt

]2

≤
∫ T

0

∫
Ω
|∇ψ(x, t)|2dxdt

∫ T

0

∫
Ω
|∇w(x, t)|2dxdt.

With (42), this implies[∫ T

0

∫
Ω
|∇w(x, t) · ∇ψ(x, t)|dxdt

]2

≤ 4T

∫ T

0

∫
Ω
|∇w(x, t) · ∇ψ(x, t)|dxdt

∫ T

0

∫
Ω
|∇w(x, t)|2dxdt.

Therefore,∫ T

0

∫
Ω
|∇w(x, t) · ∇ψ(x, t)|dxdt ≤ 4T

∫ T

0

∫
Ω
|∇w(x, t)|2dxdt,

which, together with (40), yields (38).
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�
In Lemma 4.2, we have used a result of existence of ū ∈ L2(0, T ;H1

0 (Ω)) ∩
H1(0, T ;L2(Ω)), such that ∆ū ∈ L2(Ω× (0, T )), solution to the following problem:

ν(x, t)∂tū(x, t)−∆ū(x, t) = f(x, t), for a.e. (x, t) ∈ Ω× (0, T ) (43)

with the following initial condition:

ū(x, 0) = uini(x), for a.e. x ∈ Ω, (44)

together with the homogeneous Dirichlet boundary condition:

ū(x, t) = 0 for a.e. (x, t) ∈ ∂Ω× (0, T ), (45)

under the following assumptions (which are not exactly the standard ones done
in the literature):

Ω is an open bounded connected polyhedral subset of Rd, d ∈ N? and T > 0,

(46a)

uini ∈ H1
0 (Ω) (46b)

f ∈ L2(Ω× (0, T )), (46c)

and

ν ∈ L∞(Ω× (0, T )) and ν(x, t) ∈ [νmin, νmax] with given νmax ≥ νmin > 0

for a.e. (x, t) ∈ Ω× (0, T ). (46d)

This problem, issued from (32), is called the regularized adjoint problem to Problem
(1). In order to prove the existence of a solution to Problem (43)-(44)-(45) under
hypotheses (46), we consider an approximation of this solution, using a gradient
scheme. Let D = (XD,ΠD,∇D, (t(n))n=0,...,N ) be a space-time discretization in the
sense of Definition A.9. We define the fully implicit scheme for the discretization of
Problem (52) by the sequence (u(n))n=0,...,N ⊂ XD,0 such that:

u(0) ∈ XD,0,

u(n+1) ∈ XD,0, δ
(n+ 1

2
)

D u = ΠD
u(n+1) − u(n)

δt(n+ 1
2

)
,∫ t(n+1)

t(n)

∫
Ω
ν(x, t)δ

(n+ 1
2

)

D u(x)ΠDv(x)dxdt

+δt(n+ 1
2

)

∫
Ω
∇Du(n+1)(x) · ∇Dv(x)dx =

∫ t(n+1)

t(n)

∫
Ω
f(x, t)ΠDv(x)dxdt,

∀v ∈ XD,0, ∀n = 0, . . . , N − 1.

(47)

We then use the notations ΠD and ∇D for the definition of space-time dependent
functions, defining

ΠDu(x, 0) = ΠDu
(0)(x) and ∇Du(x, 0) = ∇Du(0)(x),

ΠDu(x, t) = ΠDu
(n+1)(x) and ∇Du(x, t) = ∇Du(n+1)(x),

for a.e. (x, t) ∈ Ω× (t(n), t(n+1)], ∀n = 0, . . . , N − 1.

(48)
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and

δDu(x, t) = δ
(n+ 1

2
)

D u(x), for a.e. (x, t) ∈ Ω× (t(n), t(n+1)), ∀n = 0, . . . , N − 1. (49)

Let us state some estimates and the existence and uniqueness of the solution to
the scheme.

Lemma 4.3 (Space-time estimates on δDu and u.) Under Hypotheses (46), let
D be a space-time gradient discretization in the sense of Definition A.9. Then, for
any solution u to Scheme (47), we have:

νmin

∫ t(m)

0

∫
Ω

(δDu(x, t))2dxdt+ ‖∇Dum‖2L2(Ω)d

≤ ‖∇Du(0)‖2L2(Ω)d +
1

νmin
‖f‖2L2(Ω×(0,T )), ∀m = 1, . . . , N. (50)

As a result, there exists one and only one solution u to Scheme (47).

Proof
We set v = u(n+1) − u(n) in (47) and we sum on n = 0, . . . , N − 1. We can then

write

1

2
|∇Du(n+1)(x)|2 − 1

2
|∇Du(n)(x)|2 ≤ ∇Du(n+1)(x) · (∇Du(n+1)(x)−∇Du(n)(x)).

Thanks to the Young inequality applied to the right hand side, we conclude (50),
which ensures the existence and uniqueness of the solution to the linear Scheme (47),
which leads to square linear systems.

�
We then have the following convergence lemma.

Lemma 4.4 (Convergence of the fully implicit scheme)
Let Hypotheses (46) be fulfilled. Let (Dm)m∈N be a consistent sequence of space-

time gradient discretizations in the sense of Definition A.10, such that the associ-
ated sequence of approximate gradient approximations is consistent (Definition A.3),
limit–conforming (Definition A.4) and compact (Definition A.5, it is then coercive
in the sense of Definition A.2). For any m ∈ N, let um be the solution to Scheme

(47) for a given u
(0)
m ∈ XDm,0, such that ‖∇uini −∇Dmu

(0)
m )‖L2(Ω)d → 0 as m→∞.

Then there exist a sub-sequence of (Dm)m∈N, again denoted (Dm)m∈N, and a
function ū ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)) such that

1. for all t ∈ [0, T ], ΠDmum(t) converges in L2(Ω) to ū(t) with ū ∈ L∞(0, T ;L2(Ω))
as m→∞,

2. δDmum weakly converges in L2(Ω× (0, T )) to ∂tū as m→∞,

3. ∇Dmum weakly converges in L∞(0, T ;L2(Ω)d) to ∇ū as m→∞.

4. ∆ū ∈ L2(Ω× (0, T )),
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5. (43)-(44)-(45) hold.

Proof
This proof has a few common points with that of [15, Lemma 4.4]. Thanks to

(50), ∇Dmum remains bounded in L∞(0, T ;L2(Ω)d) and ΠDmum remains bounded
in L2(Ω × (0, T )). Since (50) also provides an L2(Ω × (0, T )) estimate on δDmum,
this immediately provides an L∞(0, T ;L2(Ω)) estimate on (ΠDmum)m∈N, thanks to

‖ΠDu(n) −ΠDu
(p)‖2L2(Ω) = ‖

n−1∑
k=p

δt(k+ 1
2

)δ
(k+ 1

2
)

D u‖2L2(Ω)

≤ (t(n) − t(p−1))‖δDmum‖2L2(Ω×(0,T )).

Moreover, the above inequality, and the compactness hypothesis, allow to apply a
variant of Ascoli’s theorem similar to [15, Theorem 6.1], and whose proof is close to
that of Theorem B.4. We deduce that there exists a function ū ∈ C0(0, T ;L2(Ω))
such that, up to the extraction of a subsequence, (ΠDmum(t))m∈N converges to ū(t)
in L2(Ω) for all t ∈ [0, T ]. Using the limit-conformity of the discretization, we then
get that ū is such that

ū ∈ L∞(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)),

ū(x, 0) = uini(x) for a.e. x ∈ Ω,
(51)

and using the consistency of the discretization in a similar way to the proof of
Theorem 3.1, we get that∫ T

0

∫
Ω

(ν ∂tū v +∇ū · ∇v) dxdt =

∫ T

0

∫
Ω
f vdxdt,∀v ∈ L2(0, T ;H1

0 (Ω)). (52)

Then (52) shows that ∆ū ∈ L2(Ω× (0, T )) and that (43)-(44)-(45) hold.
�

5 Numerical examples

5.1 The Vertex Approximate Gradient scheme

In the numerical tests proposed in this section, We use the Vertex Approximate
Gradient scheme [14]. In this scheme, a primary meshM in polyhedra is given. We
assume that each element K ∈M is strictly star-shaped with respect to some point
xK . We denote by EK the set of all interfaces K ∩L, for all neighbors of K denoted
by L ∈M and, for a boundary control volume, EK also contains the element K∩∂Ω.
Each σ ∈ EK is assumed to be the reunion of d − 1 simplices (segments if d = 2,
triangles if d = 3) denoted τ ∈ Sσ. We denote by Vσ the set of all the vertices of σ,
located at the boundary of σ, and by V0

σ the set of all the internal vertices of σ. We
assume that, for all v ∈ V0

σ, there exists coefficients (αxv )x∈Vσ , such that

v =
∑
x∈Vσ

αxvx, with
∑
x∈Vσ

αxv = 1.
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Therefore, the d vertices of any τ ∈ Sσ are elements of V0
σ ∪ Vσ. We denote by

V =
⋃
σ∈E
Vσ,

and by VK the set of all elements of V which are vertices of K. For any K ∈ M,
σ ∈ EK , τ ∈ Sσ, we denote by SK,τ the d-simplex (triangle if d = 2, tetrahedron if
d = 3) with vertex xK and basis τ .

• We then define XD as the set of all families u = ((uK)K∈M, (uv)v∈V) and XD,0
the set of all families u ∈ XD such that uv = 0 for all v ∈ V ∩ ∂Ω.

• Disjoint arbitrary domains VK,v ⊂
⋃
v∈τ SK,τ are defined for all v ∈ VK .

Then the mapping ΠD is defined, for any u ∈ XD, by ΠDu(x) = uK , for a.e.
x ∈ K \

⋃
v∈VK VK,v, and ΠDu(x) = uv for a.e. x ∈ VK,v. It is important to

notice that it is not in general necessary to provide a more precise geometric
description of VK,v than its measure.

• The mapping ∇D is defined, for any u ∈ XD, by ∇Du = ∇Π̂Du, where Π̂Du
is the continuous reconstruction which is affine in all SK,τ , for all K ∈ M,
σ ∈ EK and τ ∈ Sσ, with the values uK at xK , uv at any vertex v of τ which
belongs to Vσ, and

∑
x∈Vσ α

x
vux at any vertex v of τ which belongs to V0

σ.

The advantage of this scheme is that it allows to eliminate all values (uK)K∈M with
respect to the values (uv)v∈V , leading to linear systems which are well suited to
domain decomposition and parallel computing.

We then have the following result.

Lemma 5.1 (Gradient scheme properties of the VAG scheme)
We assume that, for all m ∈ N, a gradient discretization Dm = (XDm ,ΠDm ,∇Dm)

is defined as specified in this section, respecting a uniform bound on the maximum
value of the ratio between the diameter of all K ∈ M and that of the greatest ball
with center xK inscribed in K, and the ratio between the diameter of all SK,τ and
that of the greatest ball inscribed in SK,τ , for K ∈M, σ ∈ EK and τ ∈ Sσ. We also
assume that hDm , the maximum diameter of all K ∈M, tends to 0 as m→∞. Then
the sequence (Dm)m∈N is consistent, limit-conforming and compact (and therefore
coercive).

Proof
For all u ∈ XD, the following property

‖Π̂Du−ΠDu‖L2(Ω) ≤ hD‖∇Du‖L2(Ω)d , (53)

is resulting from Π̂Du(x)−ΠDu(x) = (x− y(x)) · ∇Du(x), for all x ∈ SK,τ , where
y(x) ∈ SK,τ is the point of the mesh M defined by y(x) = xK if x ∈ SK,τ \⋃
v∈VK VK,v, and by y(x) = v if x ∈ SK,τ ∩ VK,v.

Let us check that the hypotheses of Lemma A.7 are satisfied, for some C only
depending on regularity factors specified in the statement of the lemma, for D̂m =
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(XDm , Π̂Dm ,∇Dm). Then (58a) results from the interpolation results on the P 1 finite
element under the regularity factor of the mesh, (58b) results from∫

Ω

(
∇Du(x) ·ϕ(x) + Π̂Du(x)divϕ(x)

)
dx = 0,

and (58c) results from

‖Π̂Du(·+ ξ)− Π̂Du‖L2(Rd) ≤ |ξ|‖∇Du‖L2(Ω)d . (54)

Therefore we obtain that the sequence (D̂m)m∈N is consistent, limit-conforming and
compact. From this result and thanks to (53), it is immediate to check that the
sequence (Dm)m∈N is consistent and limit-conforming. We then remark that

‖ΠDu(·+ ξ)−ΠDu‖L2(Rd) ≤ ‖ΠDu(·+ ξ)− Π̂Du(·+ ξ)‖L2(Rd)

+‖Π̂Du(·+ ξ)− Π̂Du‖L2(Rd) + ‖Π̂Du−ΠDu‖L2(Rd),

which leads, using (53) and (54), to

‖ΠDu(·+ ξ)−ΠDu‖L2(Rd) ≤ (2hD + |ξ|)‖∇Du‖L2(Ω)d .

The application of (65) proved in Lemma B.2 leads to the relative compactness in B
of any sequence (ΠDmum)m∈N, if um ∈ XDm,0 is such that ‖um‖Dm remains bounded.
This completes the proof that the sequence (Dm)m∈N is compact.

�

5.2 A 2D test case on a variety of meshes

In this 2D test case, we approximate Stefan’s problem (1) by using the VAG scheme
previously described in the domain Ω = (0, 1)2 with the following definition of ζ(ū),

ζ(ū) =


ū if ū < 0,
ū− 1 if ū > 1,
0 otherwise.

The Dirichlet boundary condition is given by ū = −1 on ∂Ω and the initial condition
(2) is given by ū(x, 0) = 2. Four grids are used for the computations, a Cartesian
grid with 322 = 1024 cells, the same grid randomly perturbed, a triangular grids
with 896 cells and a “Kershaw mesh” with 1089 cells as illustrated for example on the
Figure 3 (such meshes are standard in the framework of underground engineering).
The time simulation is 0.1 for a constant given time step of 0.001.

Figures 3, 4, 5 and 6 represent the discrete solution u(·, t) on all grids for
t = .025, 0.05, 0.075 and 0.1. For a better comparison we have also plotted the
interpolation of u along two lines of the mesh, the first line is horizontal and joins
the two points (0, 0.5) and (1, 0.5), the second one is diagonal and joins points (0, 0)
and (1, 1). The results thus obtained are shown in Figures 1 and 2.

We can see that the obtained results are weakly dependent on the grid, and that
the interface between the regions u < 0 and u > 1 are located at the same place for
all grids. It is worth to notice that this remains true for the very irregular Kershaw
mesh, although it presents high ratios between the radii of inscribed balls and the
diameter of some internal grid blocks.
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A Appendix: gradient discretizations for diffusion prob-
lems

A gradient scheme can be viewed as a general framework for nonconforming ap-
proximation of elliptic or parabolic problems. These methods have been studied in
[14] for linear elliptic problems, and in [8] in the case of nonlinear Leray-Lions-type
elliptic and parabolic problems. The interest of the notion of gradient schemes is
that it includes conforming finite elements with mass lumping (see Remark 6 below),
mixed finite elements, hybrid mixed mimetic methods [7, 8], some discrete duality
finite volume schemes, some particular Multi-point Flux Approximation and several
other schemes. We begin with the discrete elements used for space partial differential
equations.

Definition A.1 (Gradient discretization) A gradient discretizationD for a space-
dependent second order elliptic problem, with homogeneous Dirichlet boundary con-
ditions, is defined by D = (XD,0,ΠD,∇D), where:

1. the set of discrete unknowns XD,0 is a finite dimensional vector space on R,

2. the linear mapping ΠD : XD,0 → L2(Ω) is the reconstruction of the approxi-
mate function,

3. the linear mapping ∇D : XD,0 → L2(Ω)d is the discrete gradient operator. It
must be chosen such that ‖ · ‖D := ‖∇D · ‖L2(Ω)d is a norm on XD,0.

Remark 2 (Boundary conditions.) The definition of ‖·‖D depends on the considered
boundary conditions. Here for simplicity we only consider homogeneous Dirichlet
boundary conditions, but other conditions can easily be addressed. For example, in
the case of homogeneous Neumann boundary conditions, we will use the notation
XD instead of XD,0 for the discrete space, and define for example
‖u‖D := ((

∫
Ω ΠDu(x)dx)2 + ‖∇Du‖2L2(Ω)d

)1/2; then Definition A.4 below has to be

modified, changing Hdiv(Ω) in Hdiv,0(Ω), the set of the elements of Hdiv(Ω) with
zero normal trace.

Definition A.2 (Coercivity) Let D be a gradient discretization in the sense of Def-
inition A.1, and let CD be the norm of the linear mapping ΠD, defined by

CD = max
v∈XD,0\{0}

‖ΠDv‖L2(Ω)

‖v‖D
. (55)

A sequence (Dm)m∈N of gradient discretizations is said to be coercive if there exists
CP ∈ R+ such that CDm ≤ CP for all m ∈ N.

Remark 3 (Discrete Poincaré inequality.)
In this case of homogeneous Dirichlet boundary conditions, (55) yields

‖ΠDv‖L2(Ω) ≤ CD‖∇Dv‖L2(Ω)d .

The consistency is ensured by a proper choice of the interpolation operator and
discrete gradient.
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Definition A.3 (Consistency) Let D be a gradient discretization in the sense of
Definition A.1, and let SD : H1

0 (Ω)→ [0,+∞) be defined by

∀ϕ ∈ H1
0 (Ω) , SD(ϕ) = min

v∈XD,0

(
‖ΠDv − ϕ‖L2(Ω) + ‖∇Dv −∇ϕ‖L2(Ω)d

)
. (56)

A sequence (Dm)m∈N of gradient discretizations is said to be consistent if, for all
ϕ ∈ H1

0 (Ω), SDm(ϕ) tends to 0 as m→∞.

Since we are dealing with nonconforming methods, we need that the dual of the
discrete gradient be “close to” a discrete divergence.

Definition A.4 (Limit-conformity) Let D be a gradient discretization in the sense
of Definition A.1. We let Hdiv(Ω) = {ϕ ∈ L2(Ω)d, divϕ ∈ L2(Ω)} and WD:
Hdiv(Ω)→ [0,+∞) be defined by

∀ϕ ∈ Hdiv(Ω)

WD(ϕ) = max
u∈XD,0\{0}

1

‖u‖D

∣∣∣∣∫
Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)divϕ(x)) dx

∣∣∣∣ . (57)

A sequence (Dm)m∈N of gradient discretizations is said to be limit-conforming
if, for all ϕ ∈ Hdiv(Ω), WDm(ϕ) tends to 0 as m→∞.

Dealing with generic non-linearity often requires compactness properties on the
scheme.

Definition A.5 (Compactness) A sequence (Dm)m∈N of gradient discretizations is
said to be compact if, for all sequence um ∈ XDm,0 such that ‖um‖Dm is bounded,
the sequence (ΠDmum)m∈N is relatively compact in L2(Ω).

Let us state an important relation between compactness and coercivity.

Lemma A.6 (Compactness implies coercivity)
Let (Dm)m∈N be a compact sequence of gradient discretizations in the sense of

Definition A.5. Then it is coercive in the sense of Definition A.2.

Proof
Let us assume that the sequence is not coercive. Then there exists a subsequence

of (Dm)m∈N (identically denoted) such that, for all m ∈ N, there exists um ∈ XDm,0\
{0} with

lim
m→∞

‖ΠDmum‖L2(Ω)

‖um‖Dm
= +∞.

This means that, denoting by vm = um/‖um‖Dm , limm→∞ ‖ΠDmvm‖L2(Ω) = +∞.
But we have ‖vm‖Dm = 1, and the compactness of the sequence of discretizations

implies that the sequence (ΠDmvm)m∈N is relatively compact in L2(Ω). This gives a
contradiction.

�
Thanks to [14, Lemma 2.4], we may check the consistency and limit-conformity

properties of given gradient schemes, only using dense subsets of the test functions
spaces. The following lemma, useful in Section 5, is an immediate consequence of
[14, Lemma 2.4] and of Kolmogorov’s theorem.
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Lemma A.7 (Sufficient conditions)
Let F be a family of gradient discretizations in the sense of Definition A.1.

Assume that there exist C, ν ∈ (0,∞) and, for all D ∈ F , a real value hD ∈ (0,+∞)
such that:

SD(ϕ) ≤ ChD‖ϕ‖W 2,∞(Ω), for all ϕ ∈ C∞c (Ω), (58a)

WD(ϕ) ≤ ChD‖ϕ‖(W 1,∞(Rd))d , for all ϕ ∈ C∞c (Rd)d, (58b)

max
v∈XD,0\{0}

‖ΠDv(·+ ξ)−ΠDv‖Lp(Rd)

‖v‖D
≤ C|ξ|ν , for all ξ ∈ Rd, (58c)

where CD, SD,WD are defined in this appendix.
Then, any sequence (Dm)m∈N ⊂ F such that hDm → 0 as m→∞ is consistent,

limit-conforming and compact (and therefore coercive).

Remark 4 In several cases, hD stands for the mesh size: this is the case for the
numerical schemes used in Section 5.

Definition A.8 (Piecewise constant function reconstruction)
Let D = (XD,0,ΠD,∇D) be a gradient discretization in the sense of Definition

A.1, and I be the finite set of the degrees of freedom, such that XD,0 = RI . We say
that ΠD is a piecewise constant function reconstruction if there exists a family of
open subsets of Ω, denoted by (Ωi)i∈I , such that

⋃
i∈I Ωi = Ω, Ωi∩Ωj = ∅ for all i 6=

j, and ΠDu =
∑

i∈I uiχΩi for all u = (ui)i∈I ∈ XD,0, where χΩi is the characteristic
function of Ωi.

Remark 5 Let us notice that ‖ΠD · ‖L2(Ω) is not requested to be a norm on XD,0.
Indeed, in several examples that can be considered, some degrees of freedom are
involved in the reconstruction of the gradient of the function, but not in that of the
function itself. Hence it can occur that some of the Ωi are empty.

Remark 6 An important example of gradient discretization D = (XD,0,ΠD,∇D) in
the sense of Definition A.1, such that ΠD is a piecewise constant function reconstruc-
tion in the sense of Definition A.8, is the case of the mass-lumping of conforming
finite elements. Indeed, assuming that (ξi)i∈I is the basis of some finite–dimensional
space Vh ⊂ H1

0 (Ω), we consider a family (Ωi)i∈I , chosen such that

‖
∑
i∈I

uiχΩi −
∑
i∈I

uiξi‖L2(Ω) ≤ h‖
∑
i∈I

ui∇ξi‖L2(Ω)d , ∀u ∈ XD,0.

We then define ΠD as in Definition A.8, and ∇Du =
∑

i∈I ui∇ξi. This is easily per-
formed, considering P 1 conforming finite element, splitting each simplex in subsets
defined by the highest barycentric coordinate, and defining Ωi by the union of the
subsets of the simplices connected to the vertex indexed by i.

Remark 7 Note that we have the two important following properties, in the case of
a piecewise constant function reconstruction in the sense of Definition A.8:

g(ΠDu(x)) = ΠDg(u)(x), for a.e. x ∈ Ω, ∀u ∈ XD,0, ∀g ∈ C(R), (59)
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where for any continuous function g ∈ C(R) and u = (ui)i∈I ∈ XD,0, we classically
denote by g(u) = (g(ui))i∈I ∈ XD,0 and

ΠDu(x)ΠDv(x) = ΠD(uv)(x), for a.e. x ∈ Ω, ∀u, v ∈ XD,0, (60)

where, for u = (ui)i∈I and v = (vi)i∈I ∈ XD,0, we denote by uv = (uivi)i∈I ∈ XD,0.

Definition A.9 (Space-time gradient discretization) Under Hypothesis (4a), we say
that D = (XD,0,ΠD,∇D, (t(n))n=0,...,N ) is a space-time gradient discretization of
Ω× (0, T ) if

• (XD,0,ΠD,∇D) is a gradient discretization of Ω, in the sense of Definition A.1,

• t(0) = 0 < t(1) . . . < t(N) = T .

We then set δt(n+ 1
2

) = t(n+1) − t(n), for n = 0, . . . , N − 1, and

δtD = maxn=0,...,N−1 δt
(n+ 1

2
).

Definition A.10 (Space-time consistency) A sequence (Dm)m∈N of space-time gra-
dient discretizations of Ω× (0, T ), in the sense of Definition A.9, is said to be con-
sistent if it is consistent in the sense of Definition A.3 and if δtDm tends to 0 as
m→∞.

B Appendix: technical results

The next result, which is known in the literature as the Minty trick, is used in the
proof of the convergence theorem.

Lemma B.1 (Minty trick)
Let ζ ∈ C0(R) be a nondecreasing function. Let Ω be an open bounded subset

of RN , N ≥ 1. Let (un)n∈N ⊂ L2(Ω) such that
(i) there exists u ∈ L2(Ω) such that (un)n∈N weakly converges to u in L2(Ω);
(ii) (ζ(un))n∈N ⊂ L2(Ω) and there exists w ∈ L2(Ω) such that (ζ(un))n∈N weakly

converges to w in L2(Ω);
(iii) there holds:

lim inf
n→∞

∫
Ω
un(x)ζ(un(x))dx ≤

∫
Ω
u(x)w(x)dx. (61)

Then w(x) = ζ(u(x)), for a.e. x ∈ Ω.

Proof
We first consider, for any v ∈ L2(Ω) such that ζ(v) ∈ L2(Ω),

An =

∫
Ω

(ζ(un(x))− ζ(v(x)))(un(x)− v(x))dx.

Since ζ is a nondecreasing, we have An ≥ 0. By weak/strong convergence and using
(61), we get that

0 ≤ lim inf
n→∞

An ≤
∫

Ω
(uw − uζ(v)− vw + vζ(v))dx =

∫
Ω

(w − ζ(v))(u− v)dx.
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Hence we get that, for all v ∈ L2(Ω) such that ζ(v) ∈ L2(Ω),

0 ≤
∫

Ω
(w − ζ(v))(u− v)dx ≤

∫
Ω

(w − ζ(0) + u− (ζ(v)− ζ(0) + v))(u− v)dx. (62)

Since the mapping ψ : s → ζ(s) − ζ(0) + s is continuous from R to R, strictly
increasing and tends to infinity at infinity (|ψ(s)| ≥ |s| holds for all s ∈ R), it is
invertible. Let us denote by χ the reciprocal function to ψ, which therefore satisfies

|χ(s)| ≤ |s| and ζ(χ(s)) = s+ ζ(0)− χ(s), ∀s ∈ R. (63)

We then get that, for all z ∈ L2(Ω), the function v = χ(z) is such that v ∈ L2(Ω) and
ζ(v) ∈ L2(Ω). We then obtain from (62) that, denoting by z0 = w−ζ(0)+u ∈ L2(Ω),

0 ≤
∫

Ω
(z0 − z)(u− χ(z))dx, ∀z ∈ L2(Ω). (64)

We then may take z = z0 − tϕ, with t > 0 and ϕ ∈ C∞c (Ω) in (64). Dividing by
t > 0, we obtain ∫

Ω
(u(x)− χ(z0(x)− tϕ(x)))ϕ(x)dx ≥ 0.

Letting t → 0 in the above equation, we get, by dominated convergence thanks to
(63), that ∫

Ω
(u(x)− χ(z0(x)))ϕ(x)dx ≥ 0.

Since the same inequality holds for −ϕ instead of ϕ, we get∫
Ω

(u(x)− χ(z0(x)))ϕ(x)dx = 0.

Since the above inequality holds for all ϕ ∈ C∞c (Ω), we conclude that u(x) =
χ(z0(x)) for a.e. x ∈ Ω. This means that ψ(u(x)) = z0(x) for a.e. x ∈ Ω, which
gives

ζ(u(x))− ζ(0) + u(x) = w(x)− ζ(0) + u(x), for a.e. x ∈ Ω,

and the conclusion of the lemma follows.
�

The following result is used in the convergence proof, for proving the compactness
of a particular scheme.

Lemma B.2 (Uniform limit.)
Let N ∈ N? and (gm)m∈N be a sequence of functions from RN to R+ such that

gm(0) = 0 and gm is continuous in 0. We assume that there exists a function
g : RN ×R+ → R+, with g(0, 0) = 0, continuous in (0, 0), and for all m ∈ N, there
exists µm ∈ R+ verifying lim

m→∞
µm = 0, such that

gm(ξ) ≤ g(ξ, µm), ∀m ∈ N, ∀ξ ∈ RN .

Then

lim
|ξ|→0

sup
m∈N

gm(ξ) = 0. (65)
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Proof
Let ε > 0. Let η > 0 be such that, for all (ξ, t) ∈ B(0, η)× [0, η], g(ξ, t) ≤ ε. Let

m0 ∈ N such that, for all m > m0, µm ≤ η. For all m = 0, . . . ,m0, thanks to the
continuity of gm, there exists ηm > 0 such that, for all ξ verifying |ξ| ≤ ηm, we have
gm(ξ) ≤ ε.

We now take ξ ∈ RN such that |ξ| ≤ min(η, (ηm)m=0,...,m0). We then get that,
for all m = 0, . . . ,m0, the inequality gm(ξ) ≤ ε holds, and for all m ∈ N such that
m > m0, then g(ξ, µm) ≤ ε. Gathering the previous results gives (65).

�
We finally state a discrete version of Alt–Luckhaus theorem [1], whose proof is

immediate following [18].

Theorem B.3 (Discrete Alt–Luckhaus theorem) Let T > 0, let B be a Ba-
nach space, and let p ∈ [1,+∞). Let (Bm)m∈N be a sequence of normed subspaces
of B such that, for any sequence (wm)m∈N such that wm ∈ Bm and (‖wm‖Bm)m∈N
is bounded, then the set {wm,m ∈ N} is relatively compact in B. Let (vm)m∈N such
that vm ∈ Lp(0, T ;Bm) for all m ∈ N. We assume that

(h1) the sequence (‖vm‖Lp(0,T ;Bm))m∈N is bounded,

(h2) ‖vm(·+h)− vm‖Lp(0,T−h;B) tends to 0 as h ∈ (0, T ) tends to 0, uniformly with
respect to m ∈ N.

Then the set {vm,m ∈ N} is relatively compact in Lp(0, T ;B).

Proof
Our aim is to apply Theorem 2.1 of [18]. We then prolong vm by 0 on (−∞, 0)∪

(T,+∞), for all m ∈ N. Let us prove that ‖vm(· + h) − vm‖Lp(R;B) tends to 0 as
h ∈ (0, T ) tends to 0, uniformly with respect to m ∈ N. Let us first remark that
there exists CN > 0 such that,

∀m ∈ N, ∀v ∈ Bm, ‖v‖B ≤ CN‖v‖Bm .

Indeed, otherwise one could, up to a subsequence of (Bm)m∈N, construct a sequence
such that ‖vm‖Bm = 1 and ‖vm‖B tends to infinity, which is in contradiction with
the relative compactness in B of {vm,m ∈ N}. Hence we can define

CB = sup
m∈N
‖vm‖pLp(0,T ;B).

We have, for all h ∈ (0, T ),

‖vm(·+ h)− vm‖pLp(R;B) = ‖vm(·+ h)− vm‖pLp(0,T−h;B) + ‖vm‖pLp(0,h;B)

+‖vm‖pLp(T−h,T ;B).

Let us prove that
lim
h→0

sup
m∈N
‖vm‖pLp(0,h;B) = 0. (66)

Let ε > 0. We first choose h0 ∈ (0, T ) such that, for all h ∈ (0, h0),

‖vm(·+ h)− vm‖pLp(0,T−h;B) ≤ ε, ∀m ∈ N. (67)
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Let τ ∈ (0, T − h0), h ∈ (0, h0) and m ∈ N be given. We have∫ τ

0
‖vm(t)‖pBdt ≤ 2p−1

(∫ τ

0
‖vm(t+ h)− vm(t)‖pBdt+

∫ τ

0
‖vm(t+ h)‖pBdt

)
.

Thanks to (67), the above inequality gives∫ τ

0
‖vm(t)‖pBdt ≤ 2p−1

(
ε+

∫ τ

0
‖vm(t+ h)‖pBdt

)
. (68)

We then remark that∫ h0

0

∫ τ

0
‖vm(t+ h)‖pBdtdh =

∫ τ

0

∫ h0

0
‖vm(t+ h)‖pBdhdt

≤
∫ τ

0

∫ T

0
‖vm(h)‖pBdhdt ≤ CBτ.

This proves that

h0 inf
h∈(0,h0)

∫ τ

0
‖vm(t+ h)‖pBdt ≤ CBτ.

Taking the infimum on h in (68), we get, for all τ ∈ (0, T − h0) and m ∈ N,∫ τ

0
‖vm(t)‖pBdt ≤ 2p−1

(
ε+

CBτ

h0

)
.

It now suffices to take τ ∈ (0,min(T − h0,
h0ε
CB

)) for getting∫ τ

0
‖vm(t)‖pBdt ≤ 2pε, ∀m ∈ N.

This concludes the proof of (66). A similar proof can be done for proving that

lim
h→0

sup
m∈N
‖vm‖pLp(T−h,T ;B) = 0.

We thus conclude that

lim
h→0

sup
m∈N
‖vm(·+ h)− vm‖pLp(R;B) = 0,

which enables to apply Theorem 2.1 of [18], hence providing the conclusion of the
proof.

�

Theorem B.4 Let Ω be an open bounded subset of R2, a < b ∈ R and (um)m∈N
be a sequence of functions from [a, b] to L2(Ω), such that there exists C1 > 0 with

‖um(t)‖L2(Ω) ≤ C1, ∀m ∈ N, ∀t ∈ [a, b]. (69)

We also assume that there exists a dense subset R of L2(Ω) such that, for all ϕ ∈ R,
there exists a function gϕ : R+ × R+ with g(0, 0) = 0, continuous in (0, 0) and a
sequence (hϕm)m∈N with hϕm ≥ 0 and limm→∞ h

ϕ
m = 0 and such that∣∣〈um(t2)− um(t1), ϕ〉L2(Ω),L2(Ω)

∣∣ ≤ gϕ(t2−t1, hϕm), ∀m ∈ N, ∀a ≤ t1 ≤ t2 ≤ b. (70)
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Then there exists u ∈ L∞(a, b;L2(Ω)) with u ∈ Cw([a, b], L2(Ω)) (where we denote
by Cw([a, b], L2(Ω)) the set of functions from [a, b] to L2(Ω), continuous for the weak
topology of L2(Ω)) and a subsequence of (um)m∈N, again denoted (um)m∈N, such
that, for all t ∈ [a, b], um(t) converges to u(t) for the weak topology of L2(Ω).

Proof
The proof follows that of Ascoli’s theorem. Let (tp)p∈N be a sequence of real num-

bers, dense in [a, b]. Due to (69), for each p ∈ N, we may extract from (um(tp))m∈N
a subsequence which is convergent to some element of L2(Ω) for the weak topology
of L2(Ω). Using a diagonal method, we can choose a sub-sequence, again denoted
(um)m∈N, such that (um(tp))m∈N s is weakly convergent for all p ∈ N. For any
t ∈ [a, b] and v ∈ L2(Ω), we then prove that the sequence (〈um(t), v〉L2(Ω),L2(Ω))m∈N
is a Cauchy sequence. Indeed, let ε > 0 be given. We first choose ϕ ∈ R such that
‖ϕ − v‖L2(Ω) ≤ ε. Let η > 0 such that, for all (s, t) ∈ [0, η]2, we have gϕ(s, t) ≤ ε.
Then, we choose p ∈ N such that |t− tp| ≤ η. Since (〈um(tp), ϕ〉L2(Ω),L2(Ω))m∈N is a
Cauchy sequence, we choose n0 ∈ N such that, for k, l ≥ n0,∣∣〈uk(tp)− ul(tp), ϕ〉L2(Ω),L2(Ω)

∣∣ ≤ ε,
and such that hϕk , h

ϕ
l ≤ η. We then get, using (70),∣∣〈uk(t)− ul(t), ϕ〉L2(Ω),L2(Ω)

∣∣ ≤ gϕ(|t− tp|, hϕk ) + gϕ(|t− tp|, hϕl ) + ε,

which gives ∣∣〈uk(t)− ul(t), ϕ〉L2(Ω),L2(Ω)

∣∣ ≤ 3ε.

This proves that the sequence (〈um(t), v〉L2(Ω),L2(Ω))m∈N converges. Since

|〈um(t), v〉L2(Ω),L2(Ω)| ≤ C1‖v‖L2(Ω),

we get the existence of u(t) ∈ L2(Ω) such that (um(t))m∈N converges to u(t) for the
weak topology of L2(Ω). Then u ∈ Cw([a, b], L2(Ω)) is obtained by passing to the
limit m→∞ in (70), and by using the density of R in L2(Ω).

�
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(a) t = 0.025 (b) t = 0.050

(c) t = 0.075 (d) t = 0.1

Figure 1: Interpolation of u along the line [x, 0.5] of the mesh for each grids : the
Cartesian in blue, the perturbed in red, the triangular in green and the Kershaw in
black dashed.
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(a) t = 0.025 (b) t = 0.050

(c) t = 0.075 (d) t = 0.1

Figure 2: Interpolation of u along a diagonal axe of the mesh for each grids : the
Cartesian in blue, the perturbed in red, the triangular in green and the Kershaw in
black dashed.
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(a) Cartesian (b) Perturbed

(c) Triangular (d) Kershaw

Figure 3: Discrete solution u on all grids at t = 0.025.

(a) Cartesian (b) Perturbed

(c) Triangular (d) Kershaw

Figure 4: Discrete solution u on all grids at t = 0.050.
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(a) Cartesian (b) Perturbed

(c) Triangular (d) Kershaw

Figure 5: Discrete solution u on all grids at t = 0.075.

(a) Cartesian (b) Perturbed

(c) Triangular (d) Kershaw

Figure 6: Discrete solution u on all grids at t = 0.1.
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