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Abstract

This paper presents a two-dimensional relaxation scheme for the hy-
brid modelling of two-phase gas-particle flows. The method is grounded
on a previous relaxation scheme that has been proposed to cope with one-
dimensional flows. One of the main difficulties here is due to the fact that the
Reynolds tensor occuring in the Lagrangian framework is highly anisotropic.
The interface relaxation scheme mimics a previously proposed ”relaxation
scheme” that involves GNL fields. The method is described and its main
properties are given, including a short stability analysis, and numerical re-
sults are eventually provided.

Introduction
This paper deals with the modelling and the numerical simulation of poly-
dispersed turbulent two-phase flows, where one phase is a turbulent fluid
(considered to be a continuum) and the other appears as separate inclusions
carried by the fluid (solid particles, droplets or bubbles). Such a kind of flows
can be encountered in many industrial situations (combustion, water sprays,
smokes) and in some environmental problems. Despite the need of their ac-
curate prediction, the physical complexity of these processes is so broad that
existing methods are either too expensive (in calculation cost) or not suffi-
ciently accurate.

A hybrid approach was proposed in [10] in order to cope with one-
dimensional flows, which consists in enlarging the size of the Eulerian set
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of equations, in order to retrieve a natural upwinding of so-called source
terms corresponding to the divergence of the Reynolds stress tensor. In a
one dimensional framework, this approach may be confused with classical
relaxation schemes used for the numerical approximation of solutions of
barotropic Euler equations (see [3, 6, 8, 18, 25]). The main point is that
in the 1D case, the -unique- Reynolds stress component may be viewed as
a pressure field, whereas in the multi-dimensional case the -possibly high-
anisotropy of the Reynolds stress tensor inhibits such an analogy. Therefore,
one needs to introduce another -more complex- relaxation system for such a
purpose.

As emphasized in [10], a first proposal was made which consists in mimic-
ing the natural evolution equations of the Reynolds stress tensor, which may
be easily derived (see [17], and also [16] which give some very first ideas
in that direction). Such a procedure enables to recover a correct upwinding
of complex multi-D waves that may pollute -and even blow out- numerical
approximations obtained with more naive Riemann type solvers, for instance
those relying of Euler type solvers (see for instance [21] and also [4] that
exhibits a very simple instability pattern arising with Euler-type solvers). A
drawback of this approach is that it requires enforcing a priori approximate
jump conditions which can hardly be assessed. This motivates investigating
true relaxation techniques involving only linearly degenerate fields, which is
precisely what will be done within this paper.

The system of governing equations for the mean particle concentration
αE

p , the mean flow rate αE
p 〈UE

p,i〉, which represents an Eulerian description
of the particle phase, may be written as follows:

∂tα
E
p +∂xi

(
αE

p

〈
UE

p,i

〉)
= 0

∂t

(
αE

p 〈UE
p,i〉
)
+∂x j

(
αE

p

(
〈UE

p,i〉〈UE
p, j〉+ 〈up,iup, j〉L

))
= αE

p gi +αE
p
〈
Ur,i/τp

〉L

(1)
These are deduced from a Lagrangian formulation (see [7]), where the right-
hand side terms represent the gravity and drag forces respectively. Obviously,
the Reynolds stress term 〈up,iup, j〉L in system (1) must be provided by some
external Lagrangian code, as occurs in the 1D case. We recall that the hybrid
approach consists in solving simultaneously Eulerian system (1) and its La-
grangian counterpart, which in turn provides everywhere and at any time all
components of the Reynolds stress tensor. Besides, the Eulerian model pro-
vides the values of 〈UE

p,i〉 expected free from any statistical error, that should
enable computations with a smaller number of particles in the Lagrangian
code.

In the sequel, we omit the superscripts “E” and subscripts “p”, and intro-
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duce the -constant- density of particles ρp. We denote by ρ =αE
p ρp the mean

density distribution of the particles in the domain, by Ui =
〈

UE
p,i

〉
, i = 1,2

the mean particle velocity. Hence, for given non-smooth values of the La-
grangian Reynolds stress tensor RL

i j = 〈up,iup, j〉L, we want to compute stable
approximations of solutions of:

∂tρ +∂x j(ρU j) = 0
∂t(ρUi)+∂x j(ρUiU j)+∂x j(ρRL

i j) = ρgi +ρ
〈
Ur,i/τp

〉L (2)

We emphasize that, by construction, the Reynolds stress tensor RL
i j complies

with the so-called realisability condition (see [20, 24] ):

xtRLx≥ 0 (3)

for all x ∈R2.

Before going further on, we also mention that a time-splitting strategy
is applied to system (2), which means that approximations of unsteady so-
lutions of system (2) are obtained by solving successively an homogeneous
evolution system:

∂tρ +∂x j(ρU j) = 0
∂t(ρUi)+∂x j(ρUiU j)+∂x j(ρRL

i j) = 0 (4)

and then taking source terms into account, with frozen densities:

∂tρ = 0
∂t(ρUi) = ρgi +ρ

〈
Ur,i/τp

〉L (5)

The present paper is organised as follows. In section 1, we propose two forms
of the relaxation system associated with (4) that are quite similar. Then we
discuss properties of both approaches in section 2, including some stabil-
ity results. The last section is devoted to some two-dimensional numerical
results.
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1 Two distinct relaxation systems
In order to obtain approximate solutions of system (4) with non-smooth ex-
ternal data RL

i j, we first introduce new variables Ri j that are expected to relax

towards RL
i j when some given relaxation time scale τR

p tends to 0. Since the

tensor RL
i j is symmetric by construction, its counterpart Ri j is also assumed to

be symmetric. Hence, we need to introduce new partial differential equations
that will govern the evolution of the Reynolds stresses Ri j.

This should be achieved in such a way that the new relaxation system
were hyperbolic and would preserve the realizability of solutions, which
means that Ri j should comply with (3).

On the basis of [2, 16, 17], while introducing invariants II and IL as
defined below:

IL = RL
ii and: II = RikRki (6)

the following relaxation system (7) naturally arises:

∂tρ +∂x j(ρU j) = 0
∂t(ρUi)+∂x j(ρUiU j)+∂x j(ρRi j) = 0
∂t(ρRi j)+∂xk(ρUkRi j)+ρ(Rik∂xkU j +R jk∂xkUi) = ρφi j/(τ

R
p )

(7)

noting :
φi j = Rik(RL

kl−Rkl)Rl j/IL/(II)1/2

with a classical Einstein summation notation for k, l. In the present work,
the time scale τR

p is expected to be infinitely small. The differential part
on the left hand side of (7) arises from the classical construction of mo-
tion of second-moment closures (see [1, 2, 13, 20, 23, 22, 24] among others).
The non conservative terms ρ(Rik∂xkU j +R jk∂xkUi) are usely -and abusively-
called the production terms in the turbulent literature. These are actually con-
vective contributions, and should be handled as such (see [1, 2, 4, 13]).

A first important point that is worth being mentionned is that the struc-
ture of the third equation in (7) guarantees the realisability of smooth solu-
tions Ri j. The proof is rather simple. Introducing the determinant δR of the
Reynolds stress tensor Ri j, which is precisely the product of the eigenvalues
of Ri j, noting :

Hik = Ril(RL
lk−Rlk)/(2IL)/(II)1/2/(τR

p )−∂xkUi (8)

and taking into account the mass balance equation (that is the first equa-
tion in (7)), we can rewrite the third equation of (7) as follows:

∂t(Ri j)+Uk∂xk(Ri j) = HikRk j +H jkRki (9)

4



Hence, we get the governing equation for δR (see [14, 15] for instance):

∂t(δR)+Uk∂xk(δR) = 2HllδR (10)

which implies that, for positive initial conditions and inlet boundary con-
ditions for δR, and assuming bounded values of the velocity Uk, its divergence
∂xk(Uk) and the trace Hll , smooth solutions δR(x, t) of equation (10) remain
positive for t ∈ [0,T ], using a classical positivity lemma.

We focus now on the homogeneous part of system (7), thus concentrating
on the evolution part of the relaxation system.

∂tρ +∂x j(ρU j) = 0
∂t(ρUi)+∂x j(ρUiU j)+∂x j(ρRi j) = 0
∂t(ρRi j)+∂xk(ρUkRi j)+ρ(Rik∂xkU j +R jk∂xkUi) = 0

(11)

1.1 A nonlinear interface relaxation system
System (11) is invariant under frame rotation, and it is also contains only one
non-objective term corresponding to the non-conservative terms (see [24]).
In order to define our interface solvers, we consider the reference frame
(n,τ): n = (nx,ny), τ = (−ny,nx), such that n2

x + n2
y = 1, for a given in-

terface whose normal is n. In practice, this interface will correspond to the
interface separating two adjacent cells in the computational domain. We also
introduce normal and tangential velocities Un, Uτ , and components of the
Reynolds stress tensor in the new reference frame n,τ:

Un =U .n,
Uτ =U .τ,
Rnn = nt .R.n,
Rnτ = nt .R.τ = τ tR.n = Rτn,
Rττ = τ t .R.τ.

(12)

Eventually, we define a normalized determinant called S:

S =
(
(Rnn)(Rττ)− (Rnτ)

2)/ρ
2 (13)

together with a ”non-conservative” variable:

Zt = (ρ,Un,Uτ ,ρRnn,ρRnτ ,S) (14)

When neglecting transverse variations, thus assuming that ∀φ , we have:

∂φ/∂τ = 0

and the relaxation system corresponding to system (11) written in terms of
the new variable Z takes the following form for smooth solutions of (11):

∂tZ +An(Z)∂nZ = 0, (15)
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The exact expression of the matrix An(Z) is given by:

An(Z) =


Un ρ 0 0 0 0
0 Un 0 ϑ 0 0
0 0 Un 0 ϑ 0
0 Ψnn 0 Un 0 0
0 2ρRnτ Φnτ 0 Un 0
0 0 0 0 0 Un

 (16)

noting as usual the covolume ϑ(x, t) = 1/ρ(x, t), and setting:

Ψnn = 3ρRnn, Φnτ = ρRnn. (17)

This approach (R1) corresponds to the approach introduced in [17]. Proper-
ties of system (15, 16, 17) will be detailed in section 2.

1.2 A true interface relaxation system
Rather than solving the one-dimensional Riemann problem in the n direction,
on the basis of the previous system (15, 16), together with (17), the following
approximation (18) is considered instead of (17):

Ψnn = 3A0ϑ , Φnτ = A0ϑ . (18)

where : A0 = ρ2
0 (Rnn)0, where (Rnn)0 > 0. This approach (R2) is actually a

straightforward extension of the approach introduced in [10].
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2 Main properties of relaxation systems R1, R2
We examine now the two systems connected with approaches R1 and R2 ;
more precisely, we wish to detail the structure of the solution of the one-
dimensional Riemann problem in each case. This is of course mandatory in
order to construct exact or approximate interface Riemann solvers. We also
wonder whether this solution -if any- complies with the realizability con-
straint -or not-.

2.1 Non-linear relaxation system R1
Before going further on, we need to define two celerities c1,c2 as follows:

c2
1 = 3Rnn and: c2

2 = Rnn (19)

We thus get:

Property 1:
System (15, 16) with closure (17) admits six real eigenvalues that read:

λ1,6 =Un± c1, λ2,5 =Un± c2, λ3 = λ4 =Un, (20)

Fields associated with eigenvalues λ1,6 are genuinely non linear. Other fields
are linearly degenerate.

Proof: The reader is refered to [17] for proof. As it occurs in the in-
compressible framework (see [14, 15]), eigenvalues are real if and only if the
realizability constraint is fulfilled.

Due to the occurence of non-conservative products that are active in GNL
fields, we must introduce approximate jump conditions in order to examine
solutions of the associated one-dimensional Riemann problem (see [19]). For
that purpose, we fix the following relations through discontinuities travelling
at speed σ and separating two states Zl ,Zr :

−σ [ρ]+ [ρUn] = 0
−σ [ρUn]+

[
ρU2

n +ρRnn
]
= 0

−σ [ρUτ ]+ [ρUnUτ +ρRnτ ] = 0
−σ [ρRnn]+ [ρUnRnn]+2

(
ρRnn

)
[Un] = 0

−σ [ρRnτ ]+ [ρUnRnτ ]+
(
ρRnn

)
[Uτ ]+

(
ρRnτ

)
[Un] = 0

−σ [ρRττ ]+ [ρUnRττ ]+2
(
ρRnτ

)
[Uτ ] = 0

(21)

where we note as usual [φ ] = φr−φl , and also φ = (φr+φl)/2, whatever φ is.

Moreover, we get the form of Riemann invariants after some calculations:
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Property 2 (Riemann invariants in system associated with R1):
Denoting Ik

R the list of Riemann invariants associated with field k, we get:

I1
R =

{
S, Rnn

ρ2 ,
Rnτ

ρ2 ,Un + c1,Uτ +Rnτ

√
3

c2

}
I2
R =

{
ρ,Un,ρRnn,S,Uτ +

Rnτ

c2

}
I3,4
R = {Un,Uτ ,ρRnn,ρRnτ}

I5
R =

{
ρ,Un,ρRnn,S,Uτ − Rnτ

c2

}
I6
R =

{
S, Rnn

ρ2 ,
Rnτ

ρ2 ,Un− c1,Uτ −Rnτ

√
3

c2

}
(22)

Proof: The reader is refered to [17] for proof.

Therefore, we obtain the following result:

Property 3 (Existence and Uniqueness of the solution of the Riemann prob-
lem for R1):
The Riemann problem associated with (15, 16,17), approximate jump rela-
tions (21), and realizable initial conditions for left and right states ZL,ZR,
admits a unique solution with no vacuum occurence if:

(Un)R− (Un)L <
√

3
(√

(Rnn)L +
√
(Rnn)R

)
. (23)

The solution is composed of six constant states ZL,Z1,Z2,Z3,Z4,ZR sepa-
rated by 2 GNL waves associated with λ1,6 and 4 LD waves associated with
λ2,3,4,5. All intermediate states arising in the solution of the one-dimensional
Riemann problem comply with the realizability condition (3).

Proof: The reader is refered to [17] for proof.

Actually, we emphasize that the 2 and 5 fields are ghost waves for the
three components ρ,Un,Rnn. This explains why the condition of existence
and uniqueness of the approximate solution is exactly the same as in the pure
one-dimensional framework. We also note that S is a Riemann invariant in the
1,2,5,6 waves; besides, the approximate jump conditions (21) are such that
[S] = 0, thus S satisfies some maximum principle : min(SL,SR) ≤ S(xn/t) ≤
max(SL,SR).

However, as occurs in the one-dimensional case, the validity of a priori
jump conditions (21) is questionable. Hence it seems natural to introduce a
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slightly modified version of the approach (R1), which consists in replacing
closure (17) by (18). This one is analyzed in detail below.

2.2 Relaxation system R2
We turn now to R2 and we introduce:

(c̃1)
2 = 3A0ϑ

2 and: (c̃2)
2 = A0ϑ

2 (24)

and get:

Property 4:
Assume that 0 ≤ ρ ; then system (15, 16) with closure (18) admits six real
eigenvalues that read:

λ̃1,6 =Un± c̃1, λ̃2,5 =Un± c̃2, λ̃3 = λ4 =Un, (25)

All fields are linearly degenerate.

The proof is straightforward and is left to the reader. The determinant of
An(Z)− λ̃I is:

det(An(Z)− λ̃I ) = (Wn)
2((Wn)

2−ϑΦnτ)((Wn)
2−ϑΨnn)

where Wn = Un− λ̃ . This provides in a straightforward way the expression
of eigenvalues. Thus, it only remains to check that :

∇Z λ̃k(Z).r̃k(Z) = 0

where r̃k(Z) stands for the right eigenvector associated with the eigenvalue
λ̃k, whatever k is. Starting from (16), the complete list of right eigenvectors
r̃k(Z) of An(Z) may be written in the general case:

r̃1 = (ρ,−c1,
−2ρc1Rnτ

ρc2
1−Φnτ

,ρc2
1,

ρc2
1

ρc2
1−Φnτ

,0)

r̃2 = (0,0,1,0,−ρc2,0)
r̃3 = (1,0,0,0,0,0)
r̃4 = (0,0,0,0,0,1)
r̃5 = (0,0,1,0,ρc2,0)

r̃6 = (ρ,c1,
2ρc1Rnτ

ρc2
1−Φnτ

,ρc2
1,

ρc2
1

ρc2
1−Φnτ

,0)

(26)

where Φnτ = A0ϑ when focusing on R2.

Unlike in the previous case (R1) where approximate jump conditions
were prescribed, the connection between two states separated by a contact
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discontinuity is uniquely defined, and it only requires giving Riemann in-
variants through all fields. When looking for fk(Z) such that:

∇Z fk(Z).r̃k(Z) = 0

we obtain the counterpart of property 2 which is now:

Property 5 (Riemann invariants in system associated with R2):
Riemann invariants associated with (15, 16,18) are the following:

Ĩ1
R =

{
S,ρRnn +3A0ϑ , Rnτ

ρ2 ,Un−a0ϑ ,Uτ +
ρRnτ

a0

}
Ĩ2
R =

{
ρ,Un−

√
A0ϑ ,ρRnn,S,Uτ +

Rnτ

c̃2

}
Ĩ3,4
R = {Un,Uτ ,ρRnn,ρRnτ}

Ĩ5
R =

{
ρ,Un +

√
A0ϑ ,ρRnn,S,Uτ − Rnτ

c̃2

}
Ĩ6
R =

{
S,ρRnn +3A0ϑ , Rnτ

ρ2 ,Un +a0ϑ ,Uτ − ρRnτ

a0

}
(27)

setting a0 =
√

3A0.

We may then construct the whole solution of the one-dimensional Rie-
mann problem, which is rather easy since the connection through waves is
uniquely defined by the Riemann invariant parametrization. We may give the
following result:

Property 6 (Existence and Uniqueness of the solution of the Riemann prob-
lem for R2).
Assume that ρ2

0 (Rnn)0 ≥ 0 is such that it satisfies the Wave Ordering Condi-
tion (WOC):

λ̃1 < λ̃2 < λ̃3 = λ̃4 < λ̃5 < λ̃6. (28)

Then the Riemann problem associated with (15), (18) and initial conditions
ZL,ZR satisfying (3), admits a unique solution composed of six constant states
ZL, Z̃1, Z̃2, Z̃3, Z̃4,ZR separated by six LD waves. These are such that:

ρ̃1 = ρ̃2 > 0 ρ̃3 = ρ̃4 > 0

and also:
S̃1 = S̃2 > 0 S̃3 = S̃4 > 0
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The proof is obtained by construction. The normal component of the
velocity is unique:

(Ũn)1 = (Ũn)2 = (Ũn)3 = (Ũn)4 = Ũn (29)

where:

Ũn = ((Un)L +(Un)R)/2− ((ρRnn)R− (ρRnn)L)/(2a0)

We also note that the component ρRnn is unique since:

(ρ̃R̃nn)1 = (ρ̃R̃nn)2 = (ρ̃R̃nn)3 = (ρ̃R̃nn)4 = Π (30)

where:
Π = ((ρRnn)R +(ρRnn)L)/2−a0((Un)R− (Un)L)/2

Obviously, Π is positive provided that initial conditions are such that:

(Un)R− (Un)L < ((ρRnn)L +(ρRnn)R)/a0 (31)

which should be compared with the condition of existence and uniqueness of
the solution with no vacuum occurence to the Riemann problem associated
with R1 in (23). The condition (31) may be violated in strong rarefaction
waves. Intermediate values of the density are given by:

ϑ̃1 = ϑL +((Un)R− (Un)L− ((ρRnn)R− (ρRnn)L)/a0)/(2a0)
ϑ̃3 = ϑR +((Un)R− (Un)L +((ρRnn)R− (ρRnn)L)/a0)/(2a0)

(32)

The WOC condition implies that :

λ̃1 < λ̃3 = λ̃4 < λ̃6

which guarantees positive values of densities ρ̃1 and ρ̃3 (see [10]). It only
remains to check that: λ̃1 < λ̃2 < λ̃3, which is quite obvious since:

λ̃1 = (Ũn)1− c̃1 =Un−a0ϑ̃1 <Un−
√

A0ϑ̃1 = λ̃2 <Un = λ̃3 = λ̃4

A similar result holds on the right hand side of the central wave associated
with Un.

We also emphasize that components Uτ and ρRnτ do not vary through the
central wave associated with the eigenvalue λ3 = λ4 = Un ; concerning Uτ ,
this basically differs from what happens in a compressible laminar frame-
work.

Components Rττ are calculated using the identity:

Rττ = (ρ2S+(Rnτ)
2)/Rnn
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Hence Rττ is positive if and only if Rnn is positive. The normalized determi-
nant S is positive since:

S̃1 = S̃2 = SL > 0 and S̃3 = S̃4 = SR > 0

Details on intermediate states Uτ ,Rnτ are given in appendix A.

Property 6 was more or less expected, for readers who are familiar with
turbulent compressible models.

Eventually, we wish to emphasize that the WOC is the same as in the
pure one-dimensional framework (see [6, 10]), and we only briefly recall it
in appendix A.

2.3 Stability properties
We focus on the evolution step in the relaxation procedure, and thus on
the homogeneous system corresponding to the left hand side of (7), in a
two-dimensional framework, restricting to smooth solutions ρ(x, t), Ui(x, t),
Ri j(x, t) ∈ C 1 . We denote by

E1(t) =
1
2

∫
Ω

ρU2
i (x, t)dΩ and E2(t) =

1
2

∫
Ω

ρ tr(R)(x, t)dΩ, i = 1,2.

(33)
the kinetic energy of the mean motion and the energy of the fluctuating par-
ticle motion respectively. The total particle energy is given by

E (t) = E1(t)+E2(t).

We also assume wall-boundary conditions on the boundary of the domain,
that is: ∀x ∈ ∂Ω U .n = 0 and Rn = 0.

Property 7.
We assume that S(x ∈ ∂Ω, t > t0) > 0 on the boundary, and also that the
initial condition is such that S(x ∈ Ω, t0) > 0. Then smooth solutions of the
homogeneous relaxation system corresponding to the left-hand side of system
(7) satisfy the following estimate:

0≤ E1(t) = E (t0)−E2(t)≤ E (t0), (34)

since E2(t)≥ 0

Proof: Starting from (7)), and using the mass balance equation, we easily
obtain that smooth solutions comply with:

∂t(ρUlUl/2)+∂x j(ρUlUlU j/2)+Ul∂x j(ρRl j) = 0
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but also:
∂t(ρRll)+∂xk(ρUkRll)+2ρRlk∂xkUl = 0

and thus:

∂t(
ρ(UlUl +Rll)

2
)+∂xk(Uk(

ρ(UlUl +Rll)

2
)+ρUlRlk) = 0

Adding the latter two equations, integrating over the whole domain Ω , using
definitions (33), and taking wall boundary conditions into account on ∂Ω ,
we get at once:

∂t(E (t))+
∫

∂Ω

((
ρ(UlUl +Rll)

2
)Uknk +ρUlRlknk)dσ = 0

and eventually:
∂t(E (t)) = 0

which means that : E (t) = E (0) at any time t > 0. Furthermore, as it has
been emphasized in section 1, the governing equation of S is:

∂tS+(U ·∇S) = 0. (35)

Integrating along smooth characteristic lines, and owing to relevant initial
and boundary conditions on S, we may conclude that the eigenvalues remain
positive, which in turn provides: Rll(x, t)> 0, since Rll corresponds with the
sum of eigenvalues of R. Thus : E2(t)> 0. On the whole, we may conclude
that for t > 0:

0≤ E1(t)≤ E (t0)

We emphasize here that this result cannot be obtained directly, using the sole
mass balance and mean momentum equations. Moreover, there is no need to
use a gradient-type closure law for Reynolds stresses in order to obtain this
result, as it is sometimes argued. Of course, viscous -or other dissipative-
effects might be added in the mean momentum equation ; these would result
in a strict dissipation of the whole kinetic energy of the mean motion. Other
boundary conditions may be taken into account.
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3 Numerical algorithm
In order to compute the approximations of solutions of system (2) at each
time step, the Finite Volume method relies on a classical fractional step
method, which proceeds in three distinct steps:

• An evolution step;

• An instantaneous relaxation step;

• A physical step to take sources into account.

3.1 Algorithm
The whole algorithm is thus the following:

• Step 1 (Evolution):
Starting from the conservative variable W n

i :

W n
i = (ρn,(ρUi)

n,(ρRi j)
n)

compute approximate solutions:

W n+1,−
i = (ρn+1,−,(ρUi)

n+1,−,(ρRi j)
n+1,−)

of the homogeneous system corresponding to the left hand side of (7) at time
tn+1, using an approximate Godunov solver for (R1) (see [17]) or a relax-
ation interface solver for (R2).

• Step 2 (Relaxation):
Restore local values of the Reynolds stresses Ri j = RL

i j:

ρ
n+1 = ρ

n+1,−, (ρUi)
n+1 = (ρUi)

n+1,−, (ρRi j)
n+1 = ρ

n+1(RL
i j)

n+1.

• Step 3 (Sources):
Account for physical source terms (right hand side of (2)).

We describe now the Finite Volume algorithm that is used in order to ob-
tain numerical approximations of solutions of the evolution step.

3.2 Evolution step
We introduce a partition of the computational domain in non-overlapping
cells Ωi, the measure of which is vol(Ωi). The surface separating two adja-
cent cells i and j is Si j, the outward normal vector ni j pointing from cell i to
cell j. We denote V (i) the set of neighbouring cells of Ωi. A time step ∆tn is

14



obtained using a classical CFL-like condition. At each time step, the scheme
computes approximate values W n

i of
∫

Ωi
W (x, tn)dω/vol(Ωi), using the rule:

vol(Ωi)(ρ
n+1
i −ρn

i )+∆tn Σ j∈V (i) ((ρ
∗U∗ ·n)i jSi j) = 0

vol(Ωi)((ρU)n+1
i − (ρU)n

i )+∆tn Σ j∈V (i) ((ρ
∗U∗(U∗ ·n))i jSi j)

+∆tn Σ j∈V (i)
(
(ρ∗R∗n))i jSi j

)
= 0

(36)

We use here the convention that:

(φ ∗)i j = φ
Riemann(WL =W n

i ,WR =W n
j ,ni j;

xn− (xn)i j

t
= 0)

where the solution of the one-dimensional Riemann problem corresponds to
approach R2 (or R1) in the xn direction.
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4 Numerical results
An extensive validation of both methods (R1, R2) has been achieved in [11]
in the one-dimensional framework, by computing the L1 norm of the error
for analytical solutions of Riemann problems associated with the homoge-
neous part of (2), assuming specific forms for RL

i j = ri j(ρ,U). One important
conclusion in the latter reference was that rather small discrepancies between
(R1) and (R2) were observed in all computations investigated ; another es-
sential point was that both of them could handle shock computations, which
was expected due to the conservative form of the relaxed system (4). Thus
we only show here a few two-dimensional noisy computations and we put
emphasis on the main conclusions.

4.1 A two-dimensional shock tube with noise
We start with a two-dimensional test case where the form of Lagrangian
stress tensor RL is synthetic. The exact values are given by:

RL
i j(x, t) = R0ρ

γ−1 (1+RMS(0.5− random(0,1)))δi j

with γ = 3, R0 = 105, RMS = 0.5. The value of RMS enables to fix the noise
amplitude. Obviously solutions may no longer be spherical, even when the
initial condition is invariant under rotation.

The regular mesh contains 104 squares, and the CFL number is set to 0.5.
The initial conditions for the mean values ρ and U are the following.

If x+ y < 0, we set:

ρ(x, t = 0) = 1 Ux(x, t = 0) =Uy(x, t = 0) = 0

Otherwise, for x+ y > 0, we set:

ρ(x, t = 0) = 0.35 Ux(x, t = 0) =Uy(x, t = 0) = 0

All boundary conditions are left free, using a discrete homogeneous Neu-
mann approach for states on both sides of boundary interfaces.

Hence oblique rarefaction waves and shock waves propagate parallel to
the direction y = x, and, when restricting to the density contours (see figure
1), we retrieve an important smoothing effect of noise, though the value of
RMS is rather high here, especially close to the shock structure. We may
conjecture that both the non-linear pattern of the set of PDE, and the stabi-
lization due to the upwinding scheme contribute to this pattern. Of course,
the mesh is rather coarse here, which emphasizes the smoothing effect.
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Details on the effect of RMS values on solutions are available in [11],
together with classical studies of mesh refinement.

4.2 A two-dimensional collapse over a moving fluid
The second case we consider corresponds to the collapse of a fluid struc-
ture plunged in a uniform moving frame. We use again a synthetic isotropic
signal:

RL
i j(x, t) = R0ρ

γ−1 (1+RMS(0.5− random(0,1)))δi j

with the same values of parameters as defined above. The initial condition
for ρ,U is as follows:

• If (x− x0)
2 +(y− y0)

2 < r2
0, we set:

ρ(x, t = 0) = 1 ρUx(x, t = 0) = 100 ρUy(x, t = 0) = 0

• Otherwise, for: (x− x0)
2 +(y− y0)

2 > r2
0, we set:

ρ(x, t = 0) = 0.35 ρUx(x, t = 0) = 290 ρUy(x, t = 0) = 0

with (x0,y0) = (0,0), r0 = 0.1 and Ω = [−0.5,0.5]2. Hence there is a slip
in the initial condition at the bottom of the circular region (x− x0)

2 +(y−
y0)

2 < r2
0. Values of RMS are uniform and equal to RMS = 0.5 in the region

0 < (x− x0)
2 +(y− y0)

2 < r2
1 with r1 =

√
2/2.

The first mesh contains 1000×100 rectangular uniform cells. Figures 2
give the contours of the density at times t = 0 and t = 4× 10−4. We may
observe the ”wall” effects around the surface travelling at a smaller speed,
which result in a local increase of the density. This relative speed effect is su-
perimposed to the collapsing effect. Profiles of the density are also available
in figure 4, at two different times t = T1 = 5×10−5 and t = T2 = 4×10−4, to-
gether with ρU and the Rxx component. ; one can observe strong oscillations
connected with the noise contribution, especially in almost uniform regions.
A strong rarefaction wave develops behind the collapse, which was expected,
and its perturbation by the synthetic Reynolds tensor tends to vanish as the
mean density tends to zero, and then increases again when ρ increases.

Figures 3 show the norm of the particle velocity field. Though the struc-
tures seem to be symmetric with respect to the line y = 0, we emphasize that
it is not, owing to the random contributions. However, this can be hardly
observed on figure 5 due to the post-processing.

Figures 5 provide the same density contours when the computational
mesh is refined (the second mesh contains 4000× 400 regular rectangles).
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In addition, we provide the counterpart for density and x-velocity profiles
along the vertical line y = 0 (see figure 7). The analysis of computational
results becomes easier when looking at time evolutions in movies.

We again refer to [11] that examines in detail the influence of the mesh
size on noisy calculations in a one-dimensional framework.

4.3 A highly anisotropic case
The third test case is quite similar except for the fact that the synthetic Reynolds
stress tensor is highly anisotropic, since:

RL
i j(x, t) = R0ρ

γ−1 (1+RMS(0.5− random(0,1)))Mi j

with γ = 3, R0 = 105, RMS = 0.5, and:

Mxx = 5/4, Mxy = Myx = 1/4, Myy = 3/4.

RL
i j is symmetric positive definite unless a vacuum occurs in the solution. The

initial condition for ρ,U is given below.

• If (x− x0)
2 +(y− y0)

2 < 0.01, we set:

ρ(x, t = 0) = 1

• Otherwise, we set:
ρ(x, t = 0) = 0.35

still using: (x0,y0) = (0,0). The fluid is at rest at the beginning of the com-
putation:

Ux(x, t = 0) =Uy(x, t = 0) = 0.

The computational domain is again: Ω = [−0.5,0.5]2, and we use here a fine
mesh including 1000x1000 regular cells.

The structure of the solution is rather complex. Nonetheless we may
retrieve the principal axes that are aligned with :

r+ = (1,(1+
√

2)−1) , r− = (1,(1−
√

2)−1)

Moreover, the ratio of diameters of principal axes D/d of the ellipse is ap-
proximately equal to the following ratio c+/c− (see figure 8):

c+
c−

= (
λ+

λ−
)1/2(ρ+/ρ−)

(γ−1)/2
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where ρ+ (respectively ρ−) stands for the value of the mean density just
before the shock propagating in the r+ (respectively r−) direction, and also
noting λ± the eigenvalue associated with the right eigenvector r± :

λ± = 1± (2
√

2)−1

The low values of the mean density at the origin (0,0) are due to the interac-
tion and reflection of initial -anisotropic- rarefaction waves generated by the
initial discontinuity of the mean density at r = 0.1. .

Conclusion
We have presented in this paper a new relaxation technique R2, and the main
properties of the former approach R1 and of the new one R2 have been de-
tailed. It has been shown that the stability of the relaxation system is such
that the kinetic energy of the mean momentum remains bounded in the Eu-
lerian approach. Some two-dimensional results have been discussed, and we
refer to the reference paper [11] where the mesh refinement effects have been
investigated in detail.

Actually, when computing approximations of solutions of system 2, the
relaxation technique R2 provides a useful tool in order to compute approxi-
mate values of fluxes at each interface of the Finite Volume mesh. It does not
require introducing approximate jump conditions in the Riemann problem
for the relaxation system, unlike in the former relaxation approach R1 (see
[17]). The anisotropy of the Reynolds stress tensor RL

i j may be taken into
account, which is known to be mandatory for real computations involving
fully-developped turbulence (see for instance appendix in [4] where some
nice example of numerical instability is exhibited). The relaxation approach
R2 provides a rather nice stability of the whole algorithm. It may be conjec-
tured that the conservative form of the scheme (36), which is in agreement
with the conservative form of system (4), guarantees the convergence towards
correct solutions of (4), even when shocks develop.

Eventually, we emphasize that this algorithm has been extensively used
for the unsteady coupling of a Lagrangian code with its Eulerian counterpart,
while focusing on the particle jet in a coaxial air flow along a wall boundary,
as detailed in [9]. The extension of the relaxation approaches (R1) and (R2)
to the three-dimensional framework is straightforward but rather technical.
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Appendix A
- Wave ordering condition (WOC)
Intermediate states of density are positive if:{

2ϑla2
0 +[Un]

r
l a0− [ρRnn]

r
l > 0

2ϑra2
0 +[Un]

r
l a0 +[ρRnn]

r
l > 0

(37)

We introduce :

∆1 = ([Un]
r
l )

2 +8ϑl [ρRnn]
r
l ∆2 = ([Un]

r
l )

2−8ϑr[ρRnn]
r
l . (38)

If ∆1 ≥ 0 we set:

(a0)1,2 =
−[Un]

r
l ±
√

∆1

4ϑl
.

If ∆2 ≥ 0, we set:

(a0)3,4 =
−[Un]

r
l ±
√

∆2

4ϑr
.

Starting with a minimal value amin > 0, a0 must be chosen such that :
If ∆1≥ 0 and ∆2≥ 0 then a0 should be greater than max

{
amin,(a0)i∈(1,2,3,4)

}
If ∆1≥ 0 and ∆2 < 0 then a0 should be greater than max

{
amin,(a0)i∈(1,2)

}
If ∆1 < 0 and ∆2≥ 0 then a0 should be greater than max

{
amin,(a0)i∈(3,4)

}
.

If ∆1 < 0 and ∆2 < 0 then a0 > amin.

In practice, amin is chosen such that:

amin = max(ρl(|Un|+ c1)l ,ρr(|Un|+ c1)r)

- Intermediate states Uτ and Rnτ in the one-dimensional Riemann problem
associated with the relaxation system R2.

- Reynolds stress components Rnτ :

(ρ̃R̃nτ)1 = (ρRnτ)L(ϑL/ϑ1)
3, (ρ̃R̃nτ)4 = (ρRnτ)R(ϑR/ϑ4)

3,

(ρ̃R̃nτ)2 = (ρ̃R̃nτ)3 = a0/(2
√

3){(Uτ)L− (Uτ)R +(ρRnτ/a0)L +(ρRnτ/a0)R}
+(
√

3−1)
[
(ρ̃R̃nτ/a0)1 +(ρ̃R̃nτ/a0)4

]
a0/(2

√
3),

(39)
- Tangential Velocities Uτ :

(Ũτ)1 = (Uτ)L +(ρRnτ)L/a0− (ρ̃R̃nτ)1/a0,

(Ũτ)2 = (Ũτ)3 = ((Uτ)L +(Uτ)R)/2+((ρRnτ)L− (ρRnτ)R)/2a0

+
(
(
√

3−1)(ρ̃R̃nτ)1 +(1−
√

3)(ρ̃R̃nτ)4
)
/2a0,

(40)

(Ũτ)4 = (Uτ)R− (ρRnτ)R/a0 +(ρ̃R̃nτ)4/a0.
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[15] J.M. HÉRARD, ”Realizable non-degenerate second-moment closures
for incompressible turbulent flows”, CRAS Paris IIb, vol. 322, pp.
371-377, 1996.
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Figure 1: Shock tube with noise: density contours at times t = 0 (top) and t =
4×10−4 (bottom). The CFL is 1/2.
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Figure 2: Collapse on a moving surface with noise: density contours at times t = 0
(top) and t = 4× 10−4 (bottom). Coarse mesh including 1000x100 regular cells.
The CFL is 1/2. 24



Figure 3: Collapse on a moving surface with noise: velocity contours at times t = 0
(top) and t = 4× 10−4 (bottom). Coarse mesh including 1000x100 regular cells.
The CFL is 1/2. 25
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Figure 4: Collapse on a moving surface with noise: density (top) and x-momentum
profiles at times t = T1 = 5×10−5 (left) and t = T2 = 4×10−4 (right) along the line
y = 0, together with Rxx component (bottom). Coarse mesh including 1000x100
regular cells. The CFL is 1/2.
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Figure 5: Collapse on a moving surface with noise: density contours at times t = 0
(top) and t = 4× 10−4 (bottom). This fine mesh includes 4000x400 regular cells.
The CFL is 1/2. 27



Figure 6: Collapse on a moving surface with noise: velocity contours at times t = 0
(top) and t = 4× 10−4 (bottom). This fine mesh includes 4000x400 regular cells.
The CFL is 1/2. 28
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Figure 7: Collapse on a moving surface with noise: density (top) and x-momentum
profiles at times t = T1 = 5×10−5 (left) and t = T2 = 4×10−4 (right) along the line
y = 0, together with Rxx component (bottom). This fine mesh includes 4000x400
regular cells. The CFL is 1/2.
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Figure 8: Anisotropic collapse with noise: density (top) and velocity contours
(bottom) at time t = 4×10−4. Fine mesh including 1000x1000 regular cells, with
CFL = 1/2.
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