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Abstract

The shallow water model with a source term due to topography gradient

is approximated within the frame of Finite Volume numerical methods.

The cornerstone of the method is the solution of the inhomogeneous

Riemann problem. Thus the numerical scheme can deal simultaneously

with discrete steady states, flood, occurrence and covering of dry zones.

We present the parameterization through the discontinuity of topography,

emphasizing on the resonance phenomenon. We then build the solution

of the inhomogeneous Riemann problem using a continuation method

with respect to the jump of topography. Finally, numerical experiments

illustrate the agreement of the numerical method with the previous

analysis.

Key words : shallow-water equations, source term, well-balanced
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A well-balanced numerical scheme for the shallow-water equations

1 Introduction

The design of numerical methods for the shallow water model in the frame of Finite
Volume numerical schemes deserves attention [EGH00].

The shallow-water equations model a free surface flow of incompressible water,
over a non flat topography [dSV71, Sto92]. This model is often used to simulate
river, coastal flows and dam-break flood. The two-dimensional system of partial
differential equations (PDE) writes

∂h

∂t
+
∂hu

∂x
= 0, (1a)

∂(hu)

∂t
+
∂(hu2)

∂x
+
∂(huv)

∂y
+ g

∂

∂x

(h2

2

)

= −gh∂a
∂x
, (1b)

∂(hv)

∂t
+
∂(huv)

∂x
+
∂(hv2)

∂y
+ g

∂

∂y

(h2

2

)

= −gh∂a
∂y
, (1c)

where h, u and v are three functions of time t ∈ R+ and space (x, y) ∈ R
2. These

variables denote respectively the vertical height of the water (from the bottom to the
surface of the water), the first and the second coordinate of the horizontal velocity.
The function a is the vertical height of the topography, from an arbitrary level of
reference, h + a is the height of the free surface from this level and g is the gravity
constant. The topography a is a function of the space (x, y) ∈ R

2. When the
topography a is assumed to be smooth, that is a ∈ C0(R2), the analysis of (1) is
straightforward. The left hand-side of the system is strictly hyperbolic while the
right hand-side is a classical geometric source term. One of the purposes of the
paper is to provide a solution in a particular case of discontinuous topography: a
represents a step meaning a is a Heaviside function. This situation can appear when
water passes above a dam during a flood.

The problem of the approximation of this system of PDE is difficult. First of all,
this includes all the usual difficulties which are due to the discretization of hyper-
bolic systems of conservation laws when source term is zero. The design of entropy
satisfying discrete solutions is widely documented (see for instance [GR96]). The
complexity of the problem increases when the source term PDE is non-zero. The
time step must follow constraints in order to explicit numerical methods for hyper-
bolic problems to be stable. If the characteristic time step of the source term is much
smaller than the characteristic time step of the convective part of the equations, the
overall problem is said to be stiff. The classical numerical methods, such as the
splitting method, may provide erroneous physical solutions on coarse meshes.

The second problem concerns the positivity of the height of water h. Computa-
tions with the shallow-water model involve almost all the time dry zones (wherein
h = hu = hv = 0) which must be handled by the numerical method. Classical
methods lead to a loss of conservation of the height of water or to an infinitely small
time step.

The third feature of a numerical method is its capability of preserving station-
ary solutions. Consider a non-flat topography a and an initial datum which fulfils
h + a ≡ Cst and (u, v) ≡ (0, 0) (like a lake at rest). This datum is a stationary
solution of the system (1). The numerical method must preserve such invariant,
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that is the numerical method should not make the stationary solution evolve and
propagate waves. The numerical model should include intrinsically the variation of
the topography in its derivation in order to verify this property. For example, the
well-known splitting method gives birth to numerical perturbations for this test case,
as shown by LeRoux [LeR98]. Besides, in some cases of variations of smooth/great
topography gradients, classical numerical methods can give rise to local non pressure
loss which are non-physical solutions.

Numerous numerical methods have already been proposed for (1) and the reader
is referred to [Bou02] for a large overview of numerical schemes for hyperbolic sys-
tems with source terms (see also [GHS03, KL02, LeV98, PS01]).

In this paper, a Finite Volume numerical scheme that has the following prop-
erties is presented. The numerical scheme is entropy satisfying. It belongs to the
upwind methods. One can show the positivity of the discrete height of water in
one-dimensional simulation for a classical CFL (Courant-Friedrichs-Lewy) condition
on the time step: time step restriction based only on the convective part. Finally,
it can handle any jump of topography and preserves discrete stationary states such
as states at rest, like a lake, and hydraulic jumps. Thus it is a good candidate
to solve the problems occurring during numerical simulations listed above. This
numerical method is an extension of the Godunov’s numerical scheme [God59] to
inhomogeneous equations. The first reference about this numerical scheme may be
found in [IT95] and, in an independent work, Greenberg and LeRoux [GL96b] called
this method the well-balanced numerical scheme. As in many numerical methods,
the topography is approximated by a piecewise constant function within each cell
of the mesh. Therefore, between two neighboring cells, the topography is no longer
smooth: a discontinuity occurs at the interface. The numerical formalism trans-
forms a smooth topography into a piecewise constant function. The well-balanced
numerical scheme is based on the exact solution of the Riemann problem computed
with this discontinuity of topography as an initial condition.

In the particular case of the prototype scalar equation ut + f(u)x = g(u)a′(x),
a smooth enough, Isaacson and Temple show in [IT95] the convergence of this nu-
merical scheme to the entropy solution. But this result has not been extended to
systems of PDE. The system of PDE we consider with the initial conditions of the
Riemann problem is nonstrictly hyperbolic and nonconservative [DLM95, LeF89].
For a certain set of data, Goatin and LeFloch [GL03] have listed up to three so-
lutions. Indeed, the solution of this kind of system of PDE involves some specific
features related to the resonance phenomenon: two eigenvalues of the propagation
matrix collapse (see section 3 for further details). In the case of shallow water model
with non flat topography, resonance appears when the speed of one of the gravity
waves vanishes. We will show that the non-uniqueness can happen under great to-
pography gradient and sudden change of flow regime from torrential (supersonic)
to fluvial (subsonic) flow. Our method of parameterization being equivalent to the
one proposed in [GL03], the uniqueness of the solution cannot be achieved. With
the help of a continuation method with respect to the jump of topography and fine
numerical simulation, the solution embedded into the Riemann solver is justified.

The second section recalls the Godunov’s numerical scheme for one-dimensional
homogeneous hyperbolic systems. Then the well-balanced numerical scheme is pre-
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sented. The main properties of the numerical scheme are given, based on properties
of the solution of the Riemann problem.

The third section gives the main guidelines to solve the Riemann problem, which
is the core of the well-balanced numerical method. Let us emphasize that we do not
present the complete construction of the solution [Seg99], but the main tools to
build it. The main purpose of this section is to study the behavior of the solutions
through the standing wave, with or without resonance through the discontinuity of
topography. Pertaining to the complete construction of the solution of the Riemann
problem, the continuation method with respect to the jump of topography which
is proposed enables the classification of the different kinds of wave patterns coming
from the waves being not ordered. This method illustrates this difficulty by four
solutions of the Riemann problem with a discontinuous topography and by a case
where the solution of the Riemann problem is not unique.

The fourth section corresponds to the numerical simulations provided by the well-
balanced numerical scheme that corresponds to the latter analysis. This illustrates
the continuation method and how the increase of the jump of topography changes
the wave pattern.

2 The well-balanced numerical scheme

The Godunov’s numerical scheme [God59] is presented for systems of conservation
laws. The well-balanced numerical scheme [GL96b] which is an extension of the
Godunov’s numerical scheme for hyperbolic systems with source terms is presented
afterwards. For simplicity, we restrict the presentation to the one-dimensional frame-
work. The system (1) then reads

∂u

∂t
+
∂f(u)

∂x
= s(u)a′(x),

with u = T(h, hu), the flux function f(u) = T(hu, hu2 + gh2/2) and the source term
s(u) = T(0,−gh). This system is complemented with the following initial condition

u(t = 0, x) = u0(x), ∀x ∈ R. (2)

We assume that the mesh is regular, keeping in mind that this method can be
extended easily to unstructured meshes. The sequence (xi+1/2)i∈Z is defined such
that xi+1/2 = xi−1/2 + ∆x, ∆x being the space step. Furthermore, the sequence
(tn)n∈N is defined such that t0 = 0, tn+1 = tn+∆t and ∆t is the temporal increment.

2.1 The Godunov’s numerical scheme for systems of conservation

laws

Assume the source term to be zero: a′(x) = 0. Then the system of PDE to approx-
imate can be written under the conservation form

∂u

∂t
+
∂f(u)

∂x
= 0. (3)
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The solution u of the Cauchy problem (3)-(2) is approximated by the discrete values
un

i , i ∈ Z, n ∈ N,

u0
i =

1

∆x

∫ xi+1/2

xi−1/2

u0(x) dx and un
i =

1

∆x

∫ xi+1/2

xi−1/2

u(tn, x) dx. (4)

The Godunov’s numerical scheme is the result of the Green’s formula applied to the
integral of system (3) over (tn; tn+1) × (xi−1/2;xi+1/2)

∫ tn+1

tn

∫ xi+1/2

xi−1/2

(

∂u

∂t
+
∂f(u)

∂x

)

dxdt = 0,

which yields

∫ xi+1/2

xi−1/2

(u(tn+1, x) − u(tn, x)) dx

+

∫ tn+1

tn
(f(u(t, x−i+1/2

)) − f(u(t, x+

i−1/2
))) dt = 0, (5)

where x− and x+ respectively denote the left-hand and right-hand limits of x. Such
a precision is needed because the solution u can be discontinuous through the in-
terfaces parallel to the axis x = 0 (but, due to the hyperbolicity, the discontinuities
cannot be parallel to the axis t = 0). The first integral of (5) is approximated using
(4). It remains to define the numerical approximations of the flux.

Since, at each time step, the approximate solution initially is a piecewise function
constant over each cell, the computation of u(t, x−i+1/2

) and u(t, x+

i+1/2
) for t ∈

(tn; tn+1) is given by the solution of the following Riemann problem















∂u

∂t
+
∂f(u)

∂x
= 0, t ∈ (tn; tn+1), x ∈ R,

u(tn, x) =

{

un
i if x < xi+1/2

un
i+1 if x > xi+1/2

.
(6)

Let us note un
i+1/2

(x/t;un
i ,u

n
i+1) its self-similar solution. Due to the system (3) to

be conservative, the equality

f(un
i+1/2(0

−;un
i ,u

n
i+1)) = f(un

i+1/2(0
+;un

i ,u
n
i+1)) (7)

holds. Therefore, we define the numerical flux f n
i+1/2

by

fn
i+1/2 = f(un

i+1/2(0
−;un

i ,u
n
i+1)) = f(un

i+1/2(0
+;un

i ,u
n
i+1)). (8)

The Godunov’s numerical scheme is thus defined by

un+1
i = un

i − ∆t

∆x

(

fn
i+1/2 − fn

i−1/2

)

, (9)

with the numerical flux (8). In order to ensure the stability of the numerical scheme,
a CFL condition is needed. It limits the time step ∆t in function of the space step
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∆x and the maximal wave speed of each local Riemann problem λM . This time step
restriction corresponds to the non-interaction of the waves of each local Riemann
problem

∆t ≤ ∆x

2λM
. (10)

The continuity of the numerical flux (8) comes from the system (3) to be conser-
vative. This property no longer holds with nonconservative systems. The following
section deals with such characteristic.

2.2 The well-balanced numerical scheme for inhomogeneous sys-

tems

The one-dimensional counterpart of system (1) can be written under the form

∂u

∂t
+
∂f(u)

∂x
= s(u)a′(x). (11)

The difficulty here is the approximation of the source term s(u)a′(x). Indeed, if the
slope of topography a′(x) is great, the source term becomes stiff and it has to be
carefully approximated to the numerical scheme to be stable. The idea developed
in [IT95] and [GL96b] in the scalar case is adapted to the system (11).

First, let a∆ be the approximation of a:

ai =
1

∆x

∫ xi+1/2

xi−1/2

a(x) dx and a∆(x) =
∑

i∈Z

aiχi(x), (12)

where χi(x) = 1 if x ∈ (xi−1/2;xi+1/2) and χi(x) = 0 elsewhere. The approximate
topography a∆ is considered as an additional “unknown” and the system (11) is
then approximated by the nonconservative system

∂a∆

∂t
= 0, (13a)

∂u

∂t
+
∂f(u)

∂x
− s(u)

∂a∆

∂x
= 0. (13b)

The convex Lax entropy pair associated with this nonconservative system is

(η, Fη)(a∆,u) = (hu2/2 + gh2/2 + gha∆, hu(u
2/2 + g(h + a∆))). (14)

The well-balanced numerical scheme is obtained following the same process as in
the previous section 2.1. The first step is the integration of (13b) over (tn; tn+1) ×
(xi−1/2;xi+1/2). Since in this domain ∂xa∆ = 0, we obtain once again

∫ tn+1

tn

∫ xi+1/2

xi−1/2

(

∂u

∂t
+
∂f(u)

∂x

)

dxdt = 0.

Applying the Green’s formula yields (5) again. As above, the first integral is ap-
proximated using (4). Due to the nonconservation of (13), the continuity of the
flux (7) does not hold anymore. Two numerical fluxes have to be defined for each
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interface f
n,−
i+1/2

and f
n,+
i+1/2

. They are computed with the help of the solution of the
local Riemann problem































∂a∆

∂t
= 0,

∂u

∂t
+
∂f(u)

∂x
− s(u)

∂a∆

∂x
= 0, t ∈ (tn; tn+1), x ∈ R,

u(tn, x) =

{

un
i if x < xi+1/2

un
i+1 if x > xi+1/2

and a∆(x) =

{

ai if x < xi+1/2

ai+1 if x > xi+1/2

.

(15)

If we denote by un
i+1/2

(x/t;un
i ,u

n
i+1) its self-similar solution, the numerical fluxes

are defined by

f
n,−
i+1/2

= f
(

un
i+1/2(0

−;un
i ,u

n
i+1)

)

and f
n,+
i+1/2

= f
(

un
i+1/2(0

+;un
i ,u

n
i+1)

)

, (16)

and the corresponding numerical scheme is

un+1
i = un

i − ∆t

∆x

(

f
n,−
i+1/2

− f
n,+
i−1/2

)

. (17)

Note that, in general, f
n,−
i+1/2

6= f
n,+
i+1/2

.
This numerical scheme is called the well-balanced numerical scheme. Of course,

the method must be complemented by the CFL condition (10) to ensure its stability.
The construction of the well-balanced numerical scheme is very similar to the

construction of the Godunov’s numerical scheme and they share several properties
listed below.

Proposition 2.1 We note u0
∆x(x) the piecewise constant function defined by u0

i in
cell (xi−1/2;xi+1/2). We assume that the corresponding height of water h0

∆x(x) is
nonnegative for all x ∈ R and that the solution of the Riemann problems (15) exists
in the set of nonnegative height of water. Then, the well-balanced numerical scheme,
under the CFL condition (10), fulfils the following properties

1. hn
i ≥ 0, ∀n ∈ N, ∀i ∈ Z,

2. it is entropy satisfying with respect to the entropy pair (14),

3. if we assume that the solution u of the system (13) with the initial condition

u(t = 0, x) = u0
∆x(x), ∀x ∈ R,

is stationary (ie ∂tu = 0, ∀(t, x) ∈ R+ ×R), then, the well-balanced numerical
scheme (16)-(17) ensures that

un
i = u0

i , ∀n ∈ N, ∀i ∈ Z.

Proof The well-balanced numerical scheme can be interpreted as a convection-
L2 projection algorithm since it is built on the same principles as the Godunov’s
numerical scheme (see [GR96]). This interpretation makes easier the proof of the
three properties.
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1. Since the solution of the Riemann problems (15) is supposed to provide non-
negative heights of water, the convection step provides on the whole space domain a
nonnegative height of water. Besides, the L2 projection on the space mesh preserves
the positivity of the height of water. Since h0

∆x(x) ≥ 0 ∀x ∈ R, the property 1 holds.
2. Of course, in the convection step, the rate of entropy dissipation decreases. In

the L2 projection step, arguing that the entropy η is convex and using the Jensen’s
inequality, the rate of entropy dissipation decreases (see [CP98] and [Tad86] for more
details).

3. It is clear that, since the initial datum u0
∆x is stationary, the convection step

preserves it. Moreover, it is piecewise constant on each cell of the mesh, then it is
also preserved by the L2 projection step. �

As mentioned in the introduction, the global construction of the solution of
the Riemann problem for the system (13) is not presented here (refer to [Seg99]
instead). Thus we assume that the solution of the Riemann problem exists and has
a nonnegative height of water.

The third result is very important in the frame of the shallow-water model.
Indeed, stationary solutions often occur in simulations: flow at rest (h+a ≡ cste, u ≡
0), stationary hydraulic jumps (hu ≡ cste, hu2 + gh2/2 ≡ cste), stationary smooth
flows (hu ≡ cste, u2/2 + g(h + a) ≡ cste). To the best of the authors’ knowledge,
the well-balanced numerical scheme is the unique numerical scheme which verifies
this property. Pertaining to the scalar version of the well-balanced scheme, refer to
[Gos98, GL96a, GL96b, IT95].

At this stage, the last ingredient to define completely the well-balanced numerical
scheme is the construction of the solution of the Riemann problem (15).

3 The Riemann problem

The aim of this section is to provide the main guidelines to solve the following
Riemann problem































∂a∆

∂t
= 0,

∂u

∂t
+
∂f(u)

∂x
− s(u)

∂a∆

∂x
= 0, t ∈ R

∗
+, x ∈ R,

u(tn, x) =

{

uL if x < 0

uR if x > 0
and a∆(x) =

{

aL if x < 0

aR if x > 0
.

(18)

The system (13) can be written for smooth solutions as

∂

∂t

(

a∆

u

)

+ A(u)
∂

∂x

(

a∆

u

)

= 0, with A(u) =

(

0 0
−s(u) Df(u)

)

.

A straightforward analysis of A(u) provides that this system is nonstrictly hyper-
bolic, which means that the eigenvalues of A(u) are always real, but, for some values
of u, the eigenvectors of A(u) are not linearly independent. In the following, the
1-wave is associated with the eigenvalue of A(u) λ1(u) = u − c and the 2-wave is
associated with the eigenvalue λ2(u) = u + c, with c =

√
gh the speed of gravity
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waves. These two waves correspond to genuinely non linear fields and, therefore, are
rarefaction waves or shock waves. The third eigenvalue of A(u) is λ0(u) = 0 and
corresponds to a linearly degenerate field (this 0-wave is thus a contact discontinu-
ity). In fact, the matrix A(u) is not diagonalizable if and only if |u| =

√
gh, that is

when the 1-wave or the 2-wave is superposed with the 0-wave. This is called in the
literature the resonance phenomenon.

This system is nonconservative and the definition of discontinuous solutions can
be ambiguous [DLM95, LeF89]. In the domains D− = {t ≥ 0, x < 0} and D+ =
{t ≥ 0, x > 0}, a∆ is constant and the system (13) is locally conservative and strictly
hyperbolic. The difficulty is thus located at {t > 0;x = 0}, assuming obviously that
aL 6= aR. Since the field associated with the 0-wave is linearly degenerate, the
Rankine-Hugoniot jump relations through the 0-wave can be defined using the 0-
Riemann invariants, when |u| 6=

√
gh. In the resonant case, that is when the solution

locally complies with |u| =
√
gh, since a genuinely non linear field (that is the wave

u− c or u+ c) is superposed with the linearly degenerate field (that is the 0-wave),
the 0-Riemann invariants cannot be used to parameterize the solution through the
discontinuity at x = 0. A deeper analysis is thus required.

Let us begin with the parameterization of the 1-wave and of the 2-wave in the
non resonant case.

3.1 The parameterisation of the gravity waves

The parameterization of the 1-wave and of the 2-wave is classical when their speed is
non-zero since the topography is locally flat and, thus, the source term locally van-
ishes. Then, in order to connect a state u to another state u0 through a gravity wave,
we use the standard Riemann invariants and Rankine-Hugoniot jump relations.

To connect (from the left to the right) a state u to a state u0 through the 1-wave
u − c, one may use the following relation (a rarefaction wave occurs when h < h0,
and a shock wave occurs when h > h0)

u =







u0 − 2(
√
gh−

√
gh0) if h < h0,

u0 − (h− h0)

√

g
h+ h0

2hh0

if h > h0.
(19)

In the same way, to connect (from the right to the left) a state u to a state u0

through the 2-wave u + c, one may use the following relation (a rarefaction wave
occurs when h < h0, and a shock wave occurs when h > h0)

u =







u0 + 2(
√
gh−

√
gh0) if h < h0,

u0 + (h− h0)

√

g
h+ h0

2hh0

if h > h0.
(20)

Besides, the speed of propagation σ of a 1 or 2-shock wave is given by

σ =
hu− h0u0

h− h0

. (21)

We focus now on the behavior of the solution of (18) through the discontinuity
of topography, with or without resonance.
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3.2 The parameterization through the discontinuity of topography

At least in the non resonant case, the solution should be described using the 0-
Riemann invariants, since this discontinuity corresponds to a linearly degenerate
field. The 0-Riemann invariants write

I1
0 (a,u) = hu and I2

0 (a,u) =
u2

2
+ g(h + a). (22)

Then, if ul and ur denote the states located at the left and at the right of {x = 0},
the system

I1
0 (aL,ul) = I1

0 (aR,ur), I2
0 (aL,ul) = I2

0 (aR,ur),

assuming that ul, aL and aR are given, admits zero, one or two solutions ur. It is
clear that a deeper analysis must be performed, at least to select one solution when
two are admissible.

In [LeR98], an original approach has been proposed to describe, more precisely
than simply using the 0-Riemann invariants, the behaviour of the solution through
the discontinuity, in the frame of the shallow water model with topography. This
is based on a geometric regularization of the discontinuity of topography. More
recently, Goatin and LeFloch [GL03] described the solution for a general set of
resonant inhomogeneous systems (involving the shallow water with topography),
using an arbitrary parameter which smoothly links the states (aL,ul) and (aR,ur).
These two approaches are equivalent (see remark 1). Here, the approach at first
proposed by LeRoux (see also [Seg99, CL99], [Col92]) is detailed. It has also been
used in [SV03] in the frame of a resonant conservation law for proving the existence
and the uniqueness of the associated entropy weak solution.

We are interested in the wave of speed 0. The solution of (18) through the
discontinuity {x = 0} is self-similar. We assume that aL, ul = u(x/t = 0−) and aR

are given. We choose to parameterize the solution with respect to x. To achieve this
purpose, the interface is thickened, that is the discontinuous topography is replaced
by a continuous topography aε(x) for x ∈ [−ε; +ε], ε > 0, which verifies

• aε(x ≤ −ε) = aL and aε(x ≥ ε) = aR,

• sign(a′ε(x)) = sign(aR − aL), for all x ∈ (−ε; +ε).

Then we seek the solutions (hε, hεuε)(x) ∈ R+ × R of the nonlinear system

d

dx
(hεuε) = 0, x ∈ (−ε; +ε), (23a)

d

dx

(

hεu
2
ε + g

h2
ε

2

)

= −ghε
daε

dx
, x ∈ (−ε; +ε), (23b)

with the boundary condition

(hε, hεuε)(−ε) = (hl, Ql), (23c)

where hl > 0 and Ql ∈ R. One may check that the structure of the solutions of (23)
is preserved when ε tends to zero.
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In the following, we denote the flow rate Qε = hεuε. The problem (23) may be
ill-posed. Nonetheless, if we note (hr, hrur) = (hε, hεuε)(+ε), the knowledge of the
admissible pair(s) (hr, hrur) for a given pair (hl, Ql) will describe the behavior of
the solution through stationary waves at {x = 0} and to construct the solution of
(18).

We are interested in the piecewise smooth solutions of (23). The following is
devoted to the study of the smooth solutions of (23) and the admissible discon-
tinuities associated with (23). These discontinuities are stationary 1-shock waves
or stationary 2-shock waves of the system (13) and the denominations “discontinu-
ity” and “stationary shock” will be used indifferently. Their admissibility is led by
the entropy criterion: the Lax inequalities are used. When ε tends to zero, these
discontinuities correspond to stationary shock waves located at x = 0.

First of all, we provide the solution of (23) when considering a zero discharge
Ql. In this case, the solution in the frame of piecewise smooth functions is explicit
and is based on the fact that (0, 0) is a solution of the system (23a)-(23b).

Proposition 3.1 Assume that Ql = 0. Then, the unique piecewise smooth solution
of problem (23) in R+ × R is

hε(x) = max(hl + aL − aε(x), 0), (24)

Qε(x) = 0, (25)

for x ∈ [−ε; ε].

Proof Equation (23a), in the sense of distributions, immediately provides that
Qε ≡ 0, that is (25). Let us turn now to hε. In smooth parts,

ghε
d

dx
(hε + aε) = 0 (26)

holds. Then either hε = 0 or dx(hε + aε) = 0 in the smooth parts of the solution.
Besides the Rankine-Hugoniot jump relation associated with (23b) gives

1

2

(

(h+)2 − (h−)2
)

= 0,

where the superscripts − and + refer to the states at the left and the right of the
stationary shock. We obtain that u− = u+ and that the solution is continuous.
Therefore the unique continuous solution hε(x) ∈ R+ which verifies (26) is (24). �

The following part is devoted to the smooth solutions of (23) assuming that Ql

is non-zero. Their behaviour will be detailed and will be useful for constructing not
only smooth solutions of (23) (that is a pure 0-wave, without resonance) but also to
describe the smooth parts of the solution when it involves discontinuities.
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3.2.1 Smooth solutions of (23) for a non-zero discharge

Restricting to smooth solutions of (23), the system (23a)-(23b) is written under the
following conservative form

d

dx
(hεuε) = 0,

d

dx

(

u2
ε

2
+ g(hε + aε)

)

= 0.
(27)

One recognizes here the 0-Riemann invariants (22).

Definition 3.2 Let us introduce the following sets:

• T = {(h, hu) ∈ R
∗
+ × R; |u| >

√
gh}, which represents the set of the torrential

states, also described as supercritical states;

• F = {(h, hu) ∈ R
∗
+ × R; |u| <

√
gh}, which represents the set of the fluvial

states, also described as subcritical states;

• C = {(h, hu) ∈ R
∗
+ × R; |u| =

√
gh}, which represents the set of the critical

states.

It follows that R
∗
+ × R = T ∪ F ∪ C.

This classification is the same as the classification of supersonic, subsonic and sonic
flows in aeronautics. It will allow us to describe some important features of the
solution (hε, hεuε). We now define the function ψ as

R
∗
+ × R 7−→ R+

(h,Q) 7−→ ψ(h,Q) =
Q2

2h2
+ gh.

(28)

As the solution (hε, hεuε) will be expressed with the help of ψ, some information
about this function is needed.

Lemma 3.3 For a given Q, the function ψ( . , Q) verifies the following properties:

1. this function is strictly convex;

2. it has a (global) minimum at hm = Q2/3

g1/3 and (hm, Q) belongs to the set of

critical states C;

3. let h0 be a positive constant such that ψ(h0, Q) > ψ(hm, Q). Then, if h0 < hm,
the pair (h0, Q) lies in T while if h0 > hm, the pair (h0, Q) lies in F .

The proof of these properties is straightforward.
The function ψ enables a new formulation of the problem (23):
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Lemma 3.4 A pair (hε, Qε) is a smooth solution of problem (23) if and only if it
is a smooth solution of

ψ(hε(x), Ql) = ψ(hl, Ql) − g(aε(x) − aL), x ∈ [−ε; +ε], (29a)

Qε(x) = Ql, (29b)

with the boundary condition
hε(−ε) = hl. (29c)

This simple result is obtained by integration of system (27) over (−ε;x) and by the
Green’s formula.

The height of water hε is given by the implicit equation (29a) and the velocity uε

is deduced from (29b). At this stage, the description of the smooth solutions of (23)
provided until now is strictly the same as the description which would have been
obtained using the 0-Riemann invariants. As mentioned above, (29a) may provide
zero, one or two solutions hε(ε), due to the behavior of ψ described in lemma 3.3,
and the number of solutions depends on the right hand-side of (29a). It is rather
unsatisfying, but a deeper analysis will provide more information. Let us study the
behavior of the solution of (29) according to the sign of aε(x) − aL that is the sign
of aR − aL.

The decreasing slope case We consider here that aL > aR. In such a configura-
tion, equation (29a) becomes ψ(hε(x), Ql) > ψ(hl, Ql). Since ψ(hl, Ql) ≥ ψ(hm, Ql),
the third item of lemma 3.3 ensures that equation (29a) always admits two distinct
solutions for x = +ε, denoted h−r and h+

r , such that

0 < h−r < hm(Ql) < h+
r .

For the sake of simplicity, we denote from now hm instead of hm(Ql). The following
result can be stated.

Proposition 3.5 Assume that aL > aR. If (hl, Ql) ∈ T (respectively (hl, Ql) ∈ F),
there exists one and only one smooth solution (hε, Qε) of the problem (23). Moreover,
for all x ∈ [−ε; +ε], we have (hε, Qε)(x) ∈ T (resp. (hε, Qε)(x) ∈ F).
If (hl, Ql) ∈ C, then two smooth solutions are admissible: the one in T and the other
in F .

Proof We consider the derivative of equation (29a) with respect to x,

d

dx

(

ψ(hε(x), Ql)
)

= −g a′ε(x)

i.e.
∂ψ

∂h
(hε, Ql)h

′
ε(x) = −g a′ε(x).

Due to the assumption on the slope of topography, this equation becomes

∂ψ

∂h
(hε, Ql)h

′
ε(x) > 0. (30)

This inequality provide an additional information about the solution of (23). We
obtain the following classification (see also figure 1):
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• Assume first that hε(−ε) = hl < hm (that is (hl, Ql) ∈ T ). Let us recall the
requirements that hε must fulfil: hε(−ε) = hl, hε is smooth and inequality
(30). It is straightforward to check that the unique solution hε of (29a) is such
that h′ε(x) < 0, for all x ∈ (−ε; +ε) and, therefore, hε(ε) = h−r < hl. Notice
that, in this case, the corresponding solution of (29) belongs to T .

• Consider now that hl > hm. Using once again inequality (30), the solution of
(29) belongs to F and hε(ε) = h+

r > hl.

• If hl = hm, then the problem (23) admits two different solutions h−ε and h+
ε ,

such that (h−ε )′(x) < 0 and (h+
ε )′(x) > 0, for x ∈ (−ε; +ε). They respectively

take the value h−r and h+
r for x = +ε.

ψ( . , Ql)

h

ψ( . , Ql)

h

ψ(hm, Ql)
ψ(hl, Ql)

ψ(hε(ε), Ql)

ψ(hm, Ql)
ψ(hl, Ql)

ψ(hε(ε), Ql)

h−r hl hm h+
r h−r hm hl h+

r

g|a
R
−
a

L |

g|a
R
−
a

L |

Case hl < hm Case hl > hm

Figure 1: Smooth solutions of the equation (29a), with aL > aR.

�

The increasing slope case We focus herein on the case aL < aR. The config-
uration is slightly different. Indeed, for some data, equation (29a) may admit no
smooth solution. Such a result is not in contradiction with the existence of a solution
of (18), it simply means that the boundary condition (23c) is not relevant (refer to
[SV03] where the same phenomenon is described in a more simple frame). Indeed,
the boundary condition (23c) can be modified by introducing a 1-wave for instance
with a negative speed, such that the intermediate state provide a suitable boundary
condition (23c), for which the equation (29a) admits a solution.

More precisely, we state the following result:

Proposition 3.6 Assume that aL < aR. If ψ(hl, Ql)− g(aR −aL) < ψ(hm, Ql), the
problem (23) admits no solution.
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Nonetheless, if ψ(hl, Ql) − g(aR − aL) ≥ ψ(hm, Ql), there exists one and only one
smooth solution (hε, Qε) of the problem (23). As above, if (hl, Ql) ∈ T (respectively
(hl, Ql) ∈ F), the solution (hε, Qε)(x) belongs to T ∪ C (resp. F ∪ C) for all x ∈
[−ε; +ε].

Proof The nonexistence result is straightforward, when considering equation (29a)
and lemma 3.3.

Now, let us consider the case ψ(hl, Ql) − g(aR − aL) ≥ ψ(hm, Ql). Once more,
two solutions are available. The derivative of equation (29a) with respect to x and
the assumption on the slope of topography gives

∂ψ

∂h
(hε, Ql)h

′
ε(x) < 0, ∀x ∈ (−ε; +ε). (31)

The same process as in the case aL > aR provides the following classification (see
also figure 2):

• If hl < hm, equation (31) implies that h′ε(x) is non-negative for x ∈ (−ε; +ε).
It follows that the solution hε is unique and takes the value h−r for x = +ε.
Remark that hl < h−r ≤ hm.

• Assuming now that hl > hm, one may obtain with the help of (31) that h′ε(x)
is non-positive for x ∈ (−ε; +ε). The solution hε is unique and it takes the
value h+

r for x = +ε. In this case, we have hm ≤ h+
r < hl.

ψ( . , Ql)

h

ψ( . , Ql)

h

ψ(hm, Ql)
ψ(hε(ε), Ql)

ψ(hl, Ql)

ψ(hm, Ql)
ψ(hε(ε), Ql)

ψ(hl, Ql)

hl h−
r

hm h+
r

h−
r

hm h+
r

hl

g|a
R
−
a

L |

g|a
R
−
a

L |

Case hl < hm Case hl > hm

Figure 2: Smooth solutions of the equation (29a), with aL < aR.

�
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3.2.2 Admissible discontinuities for (23) with a non-zero discharge

Let x0 be the position of a discontinuity in [−ε; +ε], and u− and u+ ( 6= u−) the states
respectively located at the left and at the right of the discontinuity. A discontinuity
for the system (23) corresponds to a stationary shock wave of the system (13).
Therefore, we complement the definition of a discontinuity by an entropy criterion:
the Lax inequalities.

Since the topography aε is smooth, the Rankine-Hugoniot jump relations are

Q+ −Q− = 0, (32a)
(

h+(u+)2 + g
(h+)2

2

)

−
(

h−(u−)2 + g
(h−)2

2

)

= 0. (32b)

With the help of these relations, it is straightforward to see that the assumption
u+ 6= u− ensures that Q− = Q+ 6= 0. This discontinuity must verify the Lax
inequalities

λ(u−) > 0 > λ(u+), (33)

where 0 is the speed of the discontinuity. When the discontinuity corresponds to
a stationary 1-shock wave for system (13), λ(u) = u − c and if it corresponds to a
stationary 2-shock wave, λ(u) = u+ c.

Proposition 3.7 If the states u− and u+ (6= u−) are separated by a discontinuity
that corresponds to a stationary 1-shock wave (respectively to a stationary 2-shock
wave) for (13), then u− lies in T (resp. in F) and u+ lies in F (resp. in T ).

Proof First of all, let us define the function φ

R
∗
+ × R 7−→ R+

(h,Q) 7−→ φ(h,Q) =
Q2

h
+ g

h2

2
.

(34)

The function φ(., Q) has the same behavior as ψ(., Q) for a given Q (see lemma 3.3),
that is

• this function is strictly convex;

• it has a (global) minimum at hm = Q2/3

g1/3 and (hm, Q) ∈ C;

• let h0 be a positive constant such that φ(h0, Q) > φ(hm, Q). Then, if h0 < hm,
the pair (h0, Q) lies in T while if h0 > hm, the pair (h0, Q) lies in F .

Therefore, using this function, the Rankine-Hugoniot jump relations (32) become

Q− = Q+,

φ(h−, Q−) = φ(h+, Q−).

Since u− 6= u+, the third item ensures that if u− ∈ T , then u+ ∈ F , and, conversely,
if u− ∈ F , then u+ ∈ T .
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Let us now assume that u− ∈ F is separated from u+ ∈ T by a discontinuity
corresponding to a stationary 1-shock wave for (13). The Lax entropy condition (33)
then writes

u− − c− > 0 > u+ − c+.

The first inequality gives u− > c−, which is in contradiction with u− ∈ F . Therefore,
for a stationary 1-shock wave, we have u− ∈ T and u+ ∈ F . The case of a 2-shock
wave is handled in the same way. �

Note that this result is well-known, at least in the frame of gas dynamics in a
duct [AW04, LT03]. Furthermore, this proposition has an immediate consequence:

Corollary 3.8 Assume that the entropy weak solution (hε, Qε) of problem (23) is
composed by smooth parts separated by admissible discontinuities in the sense of
(33) and that Ql 6= 0. Therefore, the solution admits at most one discontinuity in
[−ε; +ε].

Proof As mentioned previously, this discontinuity is a stationary 1 or 2-shock wave.
Since hl > 0, it is clear from propositions 3.5, 3.6 and 3.7 that hε(x) 6= 0, for all
x ∈ [−ε; +ε]. Then, a solution of (23) cannot admit a stationary 1-shock wave and a
stationary 2-shock wave at the same time. Furthermore, a smooth part of a solution
cannot cross the set C. Hencefore, using proposition 3.7, a solution of (23) composed
by smooth parts separated by a stationary 1-shock wave must have the form

• from −ε to x0: (hε, Qε) is smooth and lies in T ;

• in x0: (hε, Qε) admits a stationary 1-shock wave;

• from x0 to +ε: (hε, Qε) is smooth and lies in F .

We proceed in the same way for solutions of (23) composed by smooth parts sepa-
rated by stationary 2-shock wave:

• from −ε to x0: (hε, Qε) is smooth and lies in F ;

• in x0: (hε, Qε) admits a stationary 2-shock wave;

• from x0 to +ε: (hε, Qε) is smooth and lies in T .

�

Remark 1 We chose here to parameterize the behavior of the solution through the
discontinuity of topography with respect to x, thickening the interface. One can prove
that all the previous results can be obtained by just parameterizing the pair (a,u) with
respect to a variable, say µ ∈ [0; 1], such that a(µ = 0) = aL, a(µ = 1) = aR and
sign(a′(µ)) = sign(aR−aL) (instead of x varying from −ε to +ε). Such a formulation
corresponds to the ones used in [Vas02, GL03].

Remark 2 Moreover, the dependence of (hε, Qε) is only due to aε(x) (see lemma
3.4). As a consequence, one shows that, if a solution obtained with the regulariza-
tion involves a discontinuity, the position x0 of the discontinuity depends on the
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value of aε(x0). In other words, if a discontinuity occurs at x1
0 for a regulariza-

tion a1
ε, then, for a distinct regularization a2

ε, this discontinuity will be located at
x2

0 = (a2
ε)

−1(a1
ε(x

1
0)). Nevertheless, in both cases, the position of this discontinuity

tends to 0 as ε tends to zero.

Remark 3 The 0-Riemann invariants for system (13) are

I1
0 (a,u) = hu and I2

0 (a,u) =
u2

2
+ g(h + a).

If the solution of (23) is smooth, then I1
0 (aL,ul) = I1

0 (aR,ur) and I2
0 (aL,ul) =

I2
0 (aR,ur) hold. But in the case of the presence of a shock wave superposed with
{x = 0}, we have now I2

0 (aL,ul) 6= I2
0 (aR,ur). This is due to the different param-

eterizations provided by the 0-Riemann invariants and the Rankine-Hugoniot jump
relations (32) (see the example of section 3.3.3). In such a configuration, the so-
lution of the corresponding Riemann is resonant since the speed of the shock wave
is zero. The other resonant configuration corresponds to a solution of a Riemann
problem such that a rarefaction wave is critical, which means that the speed of one
of the bounds of its fan is zero.

3.3 Some solutions to the Riemann problem

We provide here some tools and examples to solve the Riemann problem (18). This
Riemann problem is much more difficult than in the case of a flat bottom. In
particular, the three waves are not ordered, which greatly increases the number of
wave patterns. Moreover, the parameterization of the 0-wave is not explicit. In order
to overcome these numerical difficulties and provide a general Riemann solver for any
set of initial data (aL,uL) and (aR,uR), we use a continuation method with respect
to the difference of topography. The idea in order to solve the Riemann problem
(18) is to start with a null jump of topography |aR −aL| = 0 and let it increase until
obtaining the jump of topography required in (18), letting the associated solution
vary in a smooth way with respect to aR − aL. When three solutions of (18) are
available, it is worth noting that this method of construction does not enable to
select one of these. The non-uniqueness is discussed later, in the section 3.3.5.

Using the relations (19) and (20), W1(u0) defines the curve defined by the set
of states which can be linked to u0 by a 1-wave, such that u0 is at the left of the
1-wave and any state u1 ∈ W1(u0) is at its right, with respect to x. W2(u0) defines
the curve containing all the states which can be linked to u0 by a 2-wave, such that
u0 is at the right of the 2-wave and any u1 ∈ W2(u0) is at its left, with respect to
x (see section 3.1).

The solution for some initial conditions is exhibited, together with a represen-
tation in the phase plane (u, c). The successive initial conditions considered at first
are such that hL < hR and uL = uR = 0. The four situations described below
correspond to several decreasing steps of topography.
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x

t

a — No step of topography.

uL uR

u− c

u+ c
ul = ur

x

t

b — A small step of topography.

uL uR

u− c u+ c
ul ur

x

t

c — A medium step of topography.

uL uR

u− c u+ c

ul

ur

x

t

d — A large step of topography.

uL uR

u− c
u− c

u+ c

ul

ur

us

Figure 3: The four solutions in the (x, t)-plane.

c

u

C

uL uR

W1(uL)

W2(uR)

ul = ur

Figure 4: No step of topography.
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3.3.1 A solution on a flat topography

In this first configuration, we assume that aL = aR. It leads to a solution composed
by uL, a 1-shock wave, an intermediate state denoted ul = ur in figure 4, a 2-
rarefaction wave and uR (see also figure 3-a). This solution is standard since it
corresponds to a strictly hyperbolic conservative system.

3.3.2 A small step of topography

c

u

C

uL uR

W1(uL)

W2(uR)

ul

ur {u;Q = Cste}

Figure 5: A small step of topography.

In this second situation, we have aL > aR, such that the solution follows the
description in figure 5. The solution becomes obviously more complex than in the
previous case. In the domain {t > 0, x < 0}, the solution is composed by uL

separated by a 1-rarefaction wave to the state ul, while in {t > 0, x > 0}, it is
composed by ur separated from uR by a 2-shock wave (see figure 3-b). Besides, the
states ul and ur comply with the relations Ql = Qr and ψ(hr, Qr) − ψ(hl, Ql) =
−g(aR − aL), and both ul and ur belong to F , in agreement with lemma 3.4 and
proposition 3.5.

In this case of non-flat topography, the flow rate across the standing wave is
positive whereas in the previous case of flat topography, the flow rate was negative.
During the continuation process, the increase of the jump of topography |aL −
aR| makes the flow rate increase. Moreover, the 1-wave is now a rarefaction wave
whereas in the previous case, it was a shock wave. It does not contradict the smooth
variation of the solution with respect to |aL − aR|, since for the intermediate jump
of topography aL − aR = hR − hL, the flow rate is zero and the two genuinely non
linear waves have a zero amplitude.
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c

u

C

uL uR

W1(uL)

W1(u
−)

W2(uR)

ul

ur

u−

u+

{u;Q = Cste}

Figure 6: A medium step of topography.

3.3.3 A medium step of topography

We now consider a larger decreasing step of topography, such that a stationary
1-shock wave appears, superposed on the discontinuity of topography. The corre-
sponding solution is depicted in figure 6.

Before commenting this solution, let us go back to the solution of the previous
paragraph. As mentioned, this solution verifies Ql = Qr, ψ(hr, Qr) − ψ(hl, Ql) =
−g(aR − aL) and ul,ur ∈ F . Now, let the jump of topography aL − aR grow,
trying to fulfil both relations and setting ul ∈ W1(uL) and ur ∈ W2(uR). It is
clear that, after a limit value am of aL − aR, some of these requirements become
incompatible. Precisely, this limit value is defined by am = (ψ(hr , Qr)−ψ(hl, Ql))/g,
where ul and ur are the states represented in figure 6. We then focus here on the
case aL − aR > am.

In the domain {t > 0, x < 0}, the solution built in figure 6 is composed by a
1-rarefaction wave, whose limit speeds are uL−cL and ul−cl = 0. In {t > 0, x > 0},
the solution is composed by ur and uR, which are linked by a 2-shock wave (see
figure 3-c). Let us study now the solution “inside” the interface {t > 0, x = 0}. The
solution is composed by two smooth parts, from ul to u− and from u+ to ur, and
u− and u+ are separated by a 1-shock wave. More precisely, these states verify

• the Rankine-Hugoniot jump relations (32) (since u+ ∈ W1(u
−)),

• u− ∈ T and u+ ∈ F (see proposition 3.7),

• Ql = Q− = Q+ = Qr and

• (ψ(hr, Qr) − ψ(h+, Q+)) + (ψ(h−, Q−) − ψ(hl, Ql)) = −g(aR − aL).

These items enable to define uniquely u− and u+. Moreover, the latter item corre-
sponds to a pressure loss through the jump of topography.
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All the states of this Riemann problem (ul, u−, u+ and ur) belong to the same
constant flow rate. This flow rate corresponds to the maximal admissible flow rate
as the flow is fluvial upstream (uL/cL < 1). This solution is well-known in the frame
of flows in a nozzle. The 1-rarefaction wave is a sonic rarefaction wave between uL

and ul (see figure 3-c).

3.3.4 A large decreasing step of topography

c

u

C

uL uR

W1(uL)

W1(u
−)

W2(uR)

ul

ur

us

{u;Q = Cste}

Figure 7: A large step of topography.

We consider now the same initial condition on u but with, once again, a larger
jump aL − aR of topography.

Let us define aM the jump of topography such that the states u+ and ur of the
previous example join. More precisely, aM = (ψ(h−M , Q−

M )−ψ(hl, Ql))/g, where u−
M

is such that Q−
M = Ql and ur ∈ W1(u

−
M ). Still focusing on the previous example,

one proves that, letting grow aL − aR from am to aM , the stationary 1-shock wave
“moves” inside the discontinuity {t > 0, x = 0}. If we consider the thickening (−ε; ε)
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of the interface, the position of the stationary 1-shock wave evolves from −ε to +ε
as the jump of topography increases from am to aM . And u+ varies from ul to ur

in a monotone way in the curve {u : Q = Ql}. Therefore, we consider here that
aL − aR > aM , which implies that the 1-shock wave of the previous example which
was stationary has now a positive velocity.

The solution is still composed in {t > 0, x < 0} by a sonic 1-rarefaction wave
between uL and ul. In {t > 0, x > 0}, the solution is respectively composed, from
x = 0 to x = +∞, by a constant state ur, a 1-shock wave, a constant state us,
a 2-shock wave and uR (see figure 3-d). It is worth noting that field associated
with the first eigenvalue is composed by a 1-rarefaction wave, a constant state and
a 1-shock wave.

In some sense, the 1-rarefaction wave λ1 = u− c splits into several components
and becomes a composite wave.

3.3.5 A case with three different entropy solutions

The solution of the four latter cases is unique. Here, we study a case where three
entropy solutions are available [GL03]. The initial condition is

x < 0 x > 0

a(x) 0.0 0.1

h(t = 0, x) 1.0 1.72626

Q(t = 0, x)
√
g + 2.

√
g + 2.

with g = 9.81. The approximate value hR = 1.72626 has been computed in order to
build a stationary solution such that a stationary 1-shock wave is located at x = 0
and such that, if we thicken the interface and regularize the topography, it is located
at the point x0 ∈ (−ε; ε) which verifies aε(x0) = 0.05.

As proved in [GL03], this initial datum provides three different solutions:

A - the first one (solid line in the figure (8)) is obviously the stationary solution
which has been used to compute hR and is composed inside x = 0 by a smooth
part from aL to a0 = 0.05, with a stationary 1-shock wave located at a0 = 0.05,
followed by another smooth part from a0 = 0.05 to aR;

B - the second one (dotted line in the figure (8)) is composed by a left-going
1-shock wave, with a pure 0-contact discontinuity and a right-going 2-shock
wave;

C - the last one (dashed line in the figure (8)) is composed by a pure 0-contact
discontinuity, with a right-going 1-shock wave followed by a right-going 2-
rarefaction wave.

In this case, the solution which is implemented in the Riemann solver is the sec-
ond one (see [Seg99]). It is also the second solution which is computed by the whole
well-balanced numerical scheme when using this test case as an initial condition in a
one-dimensional domain. The solution of the Riemann problem has been chosen in
an empiric way based on the supposed intrinsic regularization of the well-balanced
numerical scheme. In this particular case, this is important as the solution provided
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Figure 8: The three exact solutions. Top: h vs x. Bottom: Q vs x.
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by the Riemann problem must be coherent with the solution provided by the numer-
ical scheme, in order to prevent numerical oscillations, one historical fundamental
basement of the well-balanced numerical scheme.

The problem of non-uniqueness in the resonant nonconservative framework de-
serves some comments. Up to now and to the best of the authors’ knowledge, no
criterion has been proposed to select one of these three solutions as well in the scalar
case as for systems. Note that, for the shallow-water equations with topography,
the three solutions can only occur when the 1-wave interacts with an increasing step
of topography and, conversely, when the 2-wave interacts with an decreasing step of
topography (see [GL03]).

We now proceed in representative numerical tests that illustrate our matter.

4 Numerical results

Several numerical tests using the well-balanced numerical scheme (16)-(17) for sys-
tem (13) are presented. These tests correspond to the Riemann problems studied in
the previous section. In our simulations, the length of the domain is 25 m, the final
time is 1, 2 s and the initial condition is

0 ≤ x < 12.5 12.5 < x ≤ 25

h(t = 0, x) 3. 4.

Q(t = 0, x) 0. 0.

(35)

The only datum we modify is the jump of topography. As above, we will make the
jump of topography grow and comment the associated solution. All test cases are
computed with one thousand cells and the CFL condition used and which is defined
on the cells interface, is 0.4.

In all the phase plane figures, the set C that is u = ±c and the curve u = 0 (zero
flow rate) are plotted.

4.1 A test with a flat topography

This first test is quite classical and refers to the solution depicted in figure 4, that
is, setting a(x) = 0, for 0 ≤ x ≤ 25. One may notice in figure 9 that, as expected,
the solution is smooth through x = 12.5.

4.2 A test with a small decreasing jump of topography

In this case, the topography is a(x) = 2 for 0 ≤ x ≤ 12.5 and a(x) = 0 for 12.5 ≤
x ≤ 25. The height of water is no longer smooth through x = 12.5 in figure 10
and we clearly see the 1-rarefaction wave and the 2-shock wave, in agreement with
the solution depicted in figure 5. Besides, the numerical approximations of hu and
u2/2 + g(h+ a) remain constant through x = 12.5 in figure 11.
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Figure 9: A test with a flat topography. Left: h+ a vs x. Right: u vs c.
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Figure 10: A test with a small decreasing jump of topography. Left: h + a vs x.
Right: u vs c.
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Figure 11: A test with a small decreasing jump of topography. Left: hu vs x. Right:
u2/2 + g(h+ a) vs x.
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4.3 A test with a stationary 1-shock wave superposed on a decreas-

ing jump of topography

This test corresponds to the solution of figure 6, that is a solution involving a 1-
shock wave superposed on the 0-wave. One may see in figure 12 that the 1-rarefaction
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Figure 12: A test with a small decreasing jump of topography. Left: h + a vs x.
Right: u vs c.

wave is critical, that is to say u = c at x = 12.5. This solution is thus resonant.
Besides, when focusing on figure 13-right, one may remark that u2/2 + g(h + a)

0 10 20
0

1

2

3

4

5

0 10 20
30

40

50

60

70

Figure 13: A test with a small decreasing jump of topography. Left: hu vs x. Right:
u2/2 + g(h+ a) vs x.

is discontinuous through x = 12.5. This is due to the presence of the stationary
1-shock wave which is superposed on the 0-wave. This stationary shock or hydraulic
jump induces a pressure loss through the jump of topography.

In order to clarify the presence of this stationary 1-shock wave, an additional
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test is provided. In this case, the topography is the following:

a(x) =











4 0 ≤ x < 25/3,

−(12/25)x + 8 for 25/3 < x < 50/3,

0 for 50/3 < x ≤ 25.

We set the final time to 6 s (for such a time, the 2-shock wave is out of the domain).
In this case, the stationary 1-shock wave clearly appears in figure 14-left (solid
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Figure 14: A test with a stationary 1-shock wave over a decreasing slope of topog-
raphy. Left: h+ a vs x. Right: u vs c.

line). Circles represent the results obtained with the same final time, but without
regularization, that is to say with a jump of topography (of course, a translation
with respect to x has been opered to make both results coincide). We then note the
good agreement of the intermediate states with the smooth topography and with a
jump of topography.

The figure 14-right represents the result obtained with the regularization of the
topography, superposed on the result of the figure 12-right. We then can see the
same profile as in figure 6.

4.4 A test with a large decreasing jump of topography

This last test corresponds to figure 7. In this case, the jump of topography is so
large that the (previously stationary) 1-shock wave goes out the discontinuity and
moves rightwards, with a very slow speed. Note that, as seen in section 3.3.4, the
state at the right of the discontinuity of topography verifies u� c and corresponds
to the upper point in figure 15-right. As we could expect, hu and u2/2 + g(h + a)
remains constant through the jump of topography in figure 16. The oscillations in
this figure comes probably from the fact that the speed of the shock is very slow
[AR97].
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Figure 15: A test with a large decreasing jump of topography. Left: h + a vs x.
Right: u vs c.
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Figure 16: A test with a large decreasing jump of topography. Left: hu vs x. Right:
u2/2 + g(h+ a) vs x.
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5 Conclusion

We have presented in this paper the well-balanced numerical scheme associated to
the shallow-water equations with topography. This numerical scheme is based on the
Riemann problem associated with this system and, due to the jump of topography,
the model becomes nonstrictly hyperbolic. The solution of the Riemann problem is
no longer classical [GL03], the uniqueness is lost for some initial data and we provide
several guidelines for the construction of a solution. In particular, we prove that the
states on each side of the jump of topography belong to the same critical mode
(that is F or T ) in the non resonant case. In the case of resonance phenomenon, we
have shown that the states on each side of the jump of topography can belong to
different critical modes. It means that in the case of a decreasing topography which
we focus on, a fluvial mode can become a torrential mode through a stationary shock
(hydraulic jump) and the Bernouilli’s law can be violated.

After having exhibited several Riemann solutions, we have presented the numer-
ical approximations associated with these solutions, showing that the well-balanced
numerical scheme computations are in a very good agreement with the previous
analysis. Indeed, even with a large jump of topography, the method provides stable
and accurate results.

This numerical scheme has also been implemented in the two-dimensional code
Rozavel, which uses structured hexagonal meshes [Seg99]. Moreover, the extension
of the well-balanced numerical scheme to the shallow-water equations with a source
term of friction is also under investigation, based on [CL99].
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draulique 2D. Mémoire de D.E.A., GRAMM, Université Bordeaux I, 1999.
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